
International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015
 ISSN: 2395-3470

www.ijseas.com

TRANSFORMING AUTOMATED SOFTWARE FUNCTIONAL
TESTS FOR PERFORMANCE AND LOAD TESTING

Peter Sabev1, Katalina Grigorova2

1PhD Student, “Angel Kanchev” University of Ruse, Ruse, Bulgaria
2Associate Professor, “Angel Kanchev” University of Ruse, Ruse, Bulgaria

ABSTRACT

Functional testing is a quality assurance process
that could be automated. Functions are tested by
feeding them input and examining the output
expecting concrete results. However, the
performance measurement and execution times
of these tests are rarely considered when
executing functional tests. Adding simple
timestamps for every functional test execution
when such a test is started or stopped could bring
a valuable benchmarking data for analysis, save
a significant amount of time for executing
performance tests separately from functional
tests, and increase defect removal efficiency.
Keywords: Software Engineering, Software
Testing, Testing Model, Automated Testing,
Functional Testing, Performance Testing,
Regression Testing, Benchmarking

INTRODUCTION

In a typical programming project, approximately
50 percent of the elapsed time and more than 50
percent of the total cost are spent in testing the
developed program or system [3]. Software
testing has been the main form of defect removal
since software began more than 60 years ago.
There are at least 20 different forms of testing,
and typically between 3 and 12 forms of testing
will be used on almost every software
application [1].

Functional (or black-box) testing has become
one of the most popular testing methods – it can
be easily designed, executed and implemented
for automatic regression tests. This method
verifies correct handling of the functions
provided or supported by the software, or
whether the observed behavior conforms to user
expectations or product specifications by only
provisioning simple input data and comparing
the returned data (i.e. the actual results) to the
expected results.
However, using only functional testing seems to
be 35 percent less efficient, i.e., it finds only
about one bug out of three [1]. That is why
alternatives that combine higher efficiency levels
with lower costs are worth considering.
Benchmarking the software using performance
testing and analysis is such an important activity.
It provides key metrics such as response times or
throughput rates under certain workload and
configuration conditions.

CONTEMPORARY STATE OF THE
PROBLEM

Since performance analysis is not always part of
software engineering or computer science, many
software engineers are not qualified to deal with
optimizing performance [1]. Although these
measurements are important, they are rarely
performed during testing in many companies and
projects. Even the most mature test processes
divide the functional and performance testing in

447

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015
 ISSN: 2395-3470

www.ijseas.com

separate activities and separate subprojects done
by completely different specialists.
One of the reasons behind the strong separation
of performance and functional test results is that
the widely adopted IEEE 829-2008 - IEEE
Standard for Software and System Test
Documentation sets items pass/fail criteria [4]
that is often mistaken by the majority of IT
specialists as functional test pass/fail.
Although passing a test means that software has
met its functional and non-functional
requirements (such as expected response or
processing time), software testers rarely pay
attention to the performance measurements
during test execution; passing or failing used to
be enough during the years and additional
performance tests were done if needed.
All widely known modern test result formats
provide ways to store test execution time (xUnit
has <testcase time="x">, TestNG has <test-
method started-at="yyyy-dd-mmThh:mm:ssZ"
finished-at=" yyyy-dd-mmThh:mm:ssZ ">,
JSON Test Results format has float variable
called time, any log file has timestamps and any
custom XML/HTML file can have relevant time-
related tags). However, the majority of test
execution management systems and bug tracking
systems consider tests output as pass/fail flag
only, so even if recorded, functional tests time
measurements usually remain neglected.
Nowadays, even if the testers want to log
performance measurements they will eventually
need significant modification in the default
software configuration. A research based on [6],
[7] and [8] was made for 48 of the most popular
software test management tools (Aqua,
Assembla, Bstriker, Bugzilla, codeBeamer,
Enterprise Tester, Gemini, HP Quality Center,
IBM Rational Quality Manager, informUp Test
Case Management, JIRA, Klaros-
Testmanagement, Mantis, Meliora Testlab,
Occygen, Overlook, PractiTest, QAComplete,
QABook, qaManager, QMetry, qTest, RADI,
Rainforest QA, RTH-Turbo, Silk Central Test
Manager, Sitechco, Tarantula, TCW, tematoo,

Test Collab, TestComplete, TestCube,
Testersuite, Testitool, TestLink, TestLodge,
Testmaster, Testopia, TestPad, TestRail,
TestTrack, Testuff, TOSCA Testsuite, WebTST,
XORICON TestLab, XQual, XStudio and
Zephyr). As a result, all of the tools provide test
pass/fail reports and none of them has integrated
ready-to-use automated reports for functional
tests with build-to-build comparison: this is
either not supported at all, or requires additional
plugins, customization or separate setup for a
dedicated performance testing tool or feature.
However, many functional tests are automated in
everyday life. This is performed by repeatedly
executing these tests, which avoids human
mistakes during execution and ensures faster
retrieval of results. Such automated functional
tests could be slightly modified to collect
performance data by using several checkpoints
and collecting timestamps before and after each
test case or even before test step execution.
According to Table 5-6 (Defect Removal
Efficiency by Defect Type) in [1], adding
performance measurements to automated
functional tests could improve the defect
removal effectiveness by 5% for requirement-
related defects, 10% for design-related defects
and 70% for performance-related defects.

SEQUENCE DIAGRAM OF A TYPICAL
AUTOMATED FUNCTIONAL TEST

Figure 1. A typical functional test

448

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015
 ISSN: 2395-3470

www.ijseas.com

A typical automation functional test is performed
by using a test controller (TC), an external
application or module that is able to
independently configure, execute and terminate
the software under test (SUT) directly or by
using one or more test agents. Figure 1 shows a
typical time sequence diagram for simple
automated functional test.

ADDING CHECKPOINTS WITH
TIMESTAMPS TO THE FUNCTIONAL
TEST

The first step of the suggested approach is to
modify the time controller by adding two
checkpoints – one at the beginning (immediately
before the test execution has started) and one at
the end (immediately after the test execution has
ended) as shown on Figure 2. Thus, one could
easily calculate the execution time as the time
difference between the two checkpoints. Note
that the modification is done only in TC, and
SUT remains unchanged.

Figure 2. A measurement before and after
functional test execution

In this case it is possible any combination of
several different tests or same tests to be run on
different systems, subsystems, features, modules,
units, versions or environments; it is only
required to follow the practice and bracket each

test case run with time measurements as shown
in Figure 3.

Figure 3. Executing several functional tests
with time measurements

Note that two metrics for total execution time
can be obtained depending on what measures are
needed:

1. Total elapsed time during test execution:
(B.end-A.start)

2. Total test execution time:
(A.end-A.start) + (B.end-B.start) +
…

However, the nature of performance
measurements has a significant limitation – to
consider functional test performance results as
valid, the functional test should have passed. In a
case where performance drops to zero when a
high-severity bug is encountered and stops the

449

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015
 ISSN: 2395-3470

www.ijseas.com

test from running properly, test results should be
ignored [1].

Figure 4. Final state after modifying tests for
performance measurements

FINE TUNING THE PERFORMANCE
MEASUREMENTS

Until now functional tests served as baseline
tests for one single transaction in isolation as a
single user. The proposed methodology allows
ramping up to a desired target maximum
currency or throughput for the transaction by
executing same tests several times. This could be
either synchronous or asynchronous, using one
or multiple test agents covering one or multiple
test scenarios; the possible combinations are
limitless and the only requirement is to repeat
the tests and their time measurements a certain
number of times. The more measurement points
and iterations are performed, the more time for
execution is needed; however, a better precision
of the performance measurements is obtained
[5].
If tests fail or any other problems are
encountered at this stage, one only needs to run
isolation tests to identify and deal with what’s
wrong. This would be followed by a load test
combining all transactions up to target
concurrency and then by further isolation tests, if
problems are discovered [2].
Although modifying the SUT is not required to
apply the benchmarking method proposed here,
there are a number of performance tools and
measurement devices such as profilers that
collect data on the fly. It is also possible to
embed performance measurement capabilities
into software applications themselves, which is
called instrumentation. Since instrumentation
and other forms of performance analysis may
slow down application speed, one must take care
to ensure that the data is correct [1].
When executing the modified tests, it is
important to remove (or at least limit) any
external factors that could affect the performance
measurement results. Typically, these include
inconsistent network bandwidth usage, current
user load, noises or signal disturbances, different
database states (all of these are especially valid
when testing remote or third-party systems),

450

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015
 ISSN: 2395-3470

www.ijseas.com

resource allocation as CPU, disk or memory
used by other processes or users (all of these are
especially valid when using virtual machines),
TC consumes a lot of time or resources
compared to the single test execution (especially
valid for simple, fast tests), caching, etc. Normal
user flow should also be considered and user
response time must be added to functional tests,
so baseline tests to establish “ideal” response-
time performance could be performed [2].
In common practice it is required to benchmark
the “pure” response time for a given SUT
feature, module, unit or process. That is why
additional empty tests could be run at the
beginning and at the end of the test execution, as
well as between every other test measurements.
These tests could allow measuring average time
for specific test maintenance operation such as
pausing in the system, resetting environment,
setting specific configuration, reverting
snapshot, database restore or cache delete.
Even for the simplest test, it is a good idea to
bracket it for an “empty” test with null data. For
example, if a web application is tested with an
online JSON query, variations of such “empty”
tests could be times for: localhost ping,
sending/receiving request on localhost,
sending/receiving empty request on localhost,
sending request second time in order to obtain
the response via proxy or server cache, etc.
Another important point is to minimise any
activity that could impact the performance and
that could be avoided at that moment (e.g.
writing in logs, time calculations or anything
else that could be postponed). Thus, it is
advisable all calculations performed in the
middle of the test execution (Figure 3) to be
postponed after the benchmarking finishes (as
shown in Figure 4).
Considering all the tests have passed and the
time measurements are correct, the latter could
be amended accordingly with the “empty” test
results. In the example above, if the average time
for server response to empty JSON query is 0.5
seconds and a typical baseline JSON query is 3.7

seconds, obviously the “pure” JSON query
processing time is 3.7 – 0.5 = 3.2 seconds. The
exact calculations and amendment of actual test
results are highly dependent on the testing
context and should be reviewed individually
according to the project and test case specifics.
Figure 4 shows the final sequence diagram with
all the fine tuning proposals implemented.
Calculating minimum, maximum, and average
times allows even deeper look into stability, time
execution margins, and finally, early diagnosis
of potential software defects. Once the
performance tests data measurements are
collected and analyzed, they can be used as
valuable baseline against future releases,
comparison between two software
implementations, etc.

CONCLUSIONS AND FUTURE WORK

This article presents a novel approach to
functional test design that enables collecting
important performance and benchmarking data
by bracketing each functional test execution with
timestamps.
This work differs from existing approaches in
that it allows partial performance and load
testing to be done while executing functional
tests, with minor additional effort. There are
several benefits to this method: it allows early
detection of performance defects, and potentially
increases defect removal efficiency.
The theoretical ideas presented in this article
have been successfully applied in the real-world
in three different software companies: Experian
Decision Analytics (in 2010, during the testing
of their application fraud prevention software
called Hunter), Digital Property Group (in 2012,
during the testing of company’s real estate
websites), ProSyst Labs (in 2014, during the
testing of J2ME hardware devices for a Deutsche
Telekom’s smart home project called QIVICON)
and Certivox Ltd. UK (in 2015, during the
testing of M-Pin zero-password authentication
software product). Continuous performance

451

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015
 ISSN: 2395-3470

www.ijseas.com

benchmarking data obtained from the functional
tests allowed build-to-build comparisons, which
assisted the early identification of several defects
with critical severity. One of the recent examples
for the effectiveness of the proposed approach in
practice is illustrated on Figure 5. An automated
functional test case consisting of simple user
login and logout is triggered and executed every
night at 1:00h. Test execution usually took
between 3.6 and 5.0 seconds. A recent code
change on 09-May-2015 introduced a
performance issue that caused the total test
execution time to be above 6 seconds which was
confirmed during the next executions during the
weekend. On Monday, 11-May-2015 the code
change was reverted and further performance
investigation were made during the next days.
As a result, performance improvements were
done and the execution time dropped under 1.7
seconds.
However, there are some practical and
theoretical issues that need to be addressed
regarding this approach. On the practical side,
the proposed method for obtaining
benchmarking results by modifying functional
software tests cannot fully substitute regular
performance, load or stress testing activities.
Even in the case when such substitution is
theoretically possible, it would be impractical
due to the complexity of implementing and
maintaining different multi-agent functional test
execution scenarios. Another issue is the time
correction using the “empty” tests described
above, which needs to be further researched and
improved for further test results.
Much remains to be done in this regard,
especially when precise performance data is
required and many test iterations are not a
practical workaround solution. However, if the
final goal is just obtaining some performance
data that could serve as initial indicator of SUT
performance, then this is a relatively easy
approach, which has potential for very good
return of investment. This work hopes to be a

first step toward further development and
improvement of the proposed test method.

Figure 5. Execution time measurements for a
simple functional test

ACKNOWLEDGEMENTS

This work is supported by the National Scientific
Research Fund under the contract ДФНИ -
И02/13.

REFERENCE

452

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015
 ISSN: 2395-3470

www.ijseas.com

[1] Jones, C. Software Engineering Best
Practices, 3rd ed., New York, NY, USA: The
McGraw-Hill Companies, 2010.
[2] Molyneaux, I. The Art of Application
Performance Testing: Help for Programmers and
Quality, Sebastopol, CA, USA: O'Reilly Media,
Inc., 2009.
[3] Myers, G. J. The Art of Software Testing,
2nd ed., Hoboken, NJ, USA: John Wiley &
Sons, Inc., 2004.
[4] Software & Systems Engineering Standards
Committee, IEEE Standard for Software and
System Test Documentation, Fredericksburg,
VA, USA: IEEE Computer Society, 2008.
[5] Žilinskas A., D. Kučinskas, Implementation
and Testing of an Algorithm for Global

Optimizations, CompSysTech ’04 Proceedings
of the 5th International Conference on Computer
Systems and Technologies, New York, NY,
USA: ACM Inc., 2004.
[6] 15 Best Test Management Tools (2015-04-
20). Available:
http://www.softwaretestinghelp.com/15-best-
test-management-tools-for-software-testers/
[7] Ghahrai A., Best Open Source Test
Management Tools (2015-03-30). Available:
http://www.testingexcellence.com/best-open-
source-test-management-tools/
[8] Wikipedia, Test Management Tools (2015-
04-22). Available:
https://en.wikipedia.org/wiki/Test_management_
tools

453

