
 International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015
 ISSN: 2395-3470

www.ijseas.com

Performance Analysis of Algorithms on Shared Memory, Message
passing and Hybrid Models for Standalone and Clustered SMPs

T Satish Kumar1, S Sakthivel2, Durgapriya G3

1
Faculty of Information and Communication Engineering, Anna University,

Chennai,
Tamilnadu, India

2Department of CSE, Sona College of Technology, Salem, Tamilnadu, India
3Department of CSE, RNS Institute of Technology, Bengaluru, India

ABSTRACT

While algorithms are well-understood in
its sequential form, comparatively little would be
known of how to implement parallel algorithms
with main-stream parallel programming
platforms and run it on SMP-based mainstream
systems such as multi-core clusters. The project
aims at better understanding the algorithmic
techniques like divide and conquer, decrease and
conquer, transform and conquer parallel
algorithms on parallel platforms.
In this paper we investigate four benchmark
parallel algorithms such as Quick sort, Matrix
Multiplication, Montecarlo, LU Decomposition
on Shared memory algorithms that run on SMP-
based mainstream systems with OpenMP,
Message-passing model on computer clusters
with Open MPI, and combined Hybrid
algorithms with combination of OpenMP and
MPI that run on clustered SMPs. Parallel
Benchmark programs are run on a dedicated
Beowulf cluster and their performance were
investigated.

INTRODUCTION

Parallel computing is a form of
computation that allows many instructions to be
run concurrently, in parallel in a program. This
can be achieved by splitting up a program into
independent parts so that each processor can
execute its part of the program concurrently with
the other processors. This can be done on a

single computer with multiple processors or with
number of individual computers connected by a
network or a combination of the two. A parallel
programming model is often associated with one
or several parallel programming languages or
libraries that recognize the Parallel algorithms
model that are usually formulated in terms of a
particular parallel programming model.

 OpenMP (Open Multi-Processing),
Message Passing Interface (MPI) and Hybrid
Combination consisting of OpenMP and MPI is
a parallel programming model where
communication among the processes is done by
message interchanging. OpenMP is an
Application Programming Interface (API) [12]
that provides multi-platform shared memory
multi-processing in C, C++ and Fortran
processor architectures and operating systems
including Solaris Linux, AIX, HP-UX, Mac OS
X and Windows platforms.

MPI [21] is a widely accepted standard

for writing message passing programs. MPI
provides the user with a programming model
where processes communicate with other
processes by initiating library routines to send
and receive messages. The advantage of the MPI
programming model is that the user has
complete control over data distribution and
process synchronization, permitting the

425

 International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015
 ISSN: 2395-3470

www.ijseas.com

optimization data locality and
workflow.Message Passing Interface (MPI) is
the de-facto standard for programming
distributed memory systems as it provides a
simple communication API and simplifies the
task of developing portable parallel applications.

Hybrid OpenMP+MPI programming

model facilitates cooperative shared memory
programming across clustered SMP nodes[6].
MPI provides communication among various
SMP nodes whereas OpenMP controls the
workload on each SMP node. OpenMP and MPI
are used in tandem to control the overall
concurrency of the application.

EXISTING SYSTEM

The OpenMP and MPI programming
models can be combined into a hybrid
programming paradigm to exploit parallelism
ahead of a single level. The main purpose of
Hybrid parallel programming paradigm[17] is to
adhere process level coarse-grain parallelism,
which is obtained in domain decomposition and
fine grain parallelism on a loop level which is
achieved by compiler directives. The Hybrid
programming approach is appropriate for
clusters of SMP nodes where MPI is required for
parallelism across nodes and OpenMP can be
used to exploit loop level parallelism within a
node. Applications are designed to run on a
single system. But individual systems are not
capable of solving the significant problems
efficiently because of their inherent complexity.
Sequential programs/single threaded programs
designed cannot utilize the CPU power
efficiently. Hence For these computation intense
applications, there is a need for requirement of
clusters to compute results.

In Hybrid model where MPI

programming model combines with OpenMP
programming model, the memory within each
node is shared by OpenMP threads, hence the
total memory consumption is much fewer than

using MPI ranks exclusively[6]. Scalability is
also enhanced due to less MPI communication
between the nodes. Also, communication among
lightweight threads within a node is much
quicker than MPI communication
sends/receives. However, to make efficient use
of hardware, mapping of threads to existing
cores must be done efficiently. Also, the total
number of OpenMP threads per MPI rank must
be chosen and the mechanism of MPI blocking
must be carefully applied since it can result to
deadlock. To run applications on clusters, MPI is
a de-facto standard.The limitation is that it
cannot harness the capacity of a multi-core
processor. Hence multi-threading the
applications must be done.

PROPOSED SYSTEM

Parallel programming model is a
combination of the distributed memory
parallelization on the node interconnects along
with shared memory parallelization inside each
node. The challenges and the potentials of the
dominant programming models on structured
hardware hierarchy is described: MPI (message
passing interface), OpenMP (with distributed
shared memory extension) and Hybrid
OpenMP+MPI in several flavors. There are few
cases where the hybrid programming model can
certainly be the finer solution because of
Memory consumption or improved load balance
and reduced communication needs.

Hybrid programming introduces

OpenMP into MPI application that makes more
proficient shared memory usage on SMP nodes,
thus justifying the requirement for explicit intra-
node communication. Introducing OpenMP and
MPI during the coding/design of a new
application can maximize efficiency, scaling and
performance. At the recent time, the hybrid
programming model has begun to draw more
consideration, for at least two reasons.

426

 International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015
 ISSN: 2395-3470

www.ijseas.com

The first reason is that it is comparatively
easy to pick a library/language instantiation of
the Hybrid model: OpenMP plus MPI. Though
there may be other approaches, they prolong as
research and development projects, whereas
OpenMP compilers and MPI libraries are now
firm commercial products with implementations
from various vendors.

The second reason is that a scalable

parallel computer encourages this model. All the
fastest machines virtually consist of multi-core
nodes connected by a high speed network. The
scheme of using OpenMP threads is to utilize
multiple cores per node (with one multithreaded
process per node) using MPI to communicate
among the nodes.

SYSTEM ARCHITECTURE
 System Architecture is shown in Fig.1.
The User Interface (UI) layer consists of
configuration files where the user can enter the
configuration details like Number of cores,
threads, hosts in the server and the input to the
Benchmark program.

The next layer is the Execution layer.

The various Benchmark programs are read using
file handling functions and are parallelized using
OpenMp, MPI and Hybrid OpenMp+MPI and
evaluated.

The third layer is the communication

layer. A Beowulf cluster is rigged up consisting
of 8 nodes which can be scaled up as per the
requirement. Open MPI is used to communicate
between the master and the slave nodes. For this
to happen, same piece of code has to reside on
all the machines. Network File System (NFS) is
used to share the common folder containing the
source code. Open MPI uses SSH to
communicate within nodes. So open SSH has to
be installed and the password authentication has
to be removed on all nodes. TCP/IP protocol is
used for the communication.

EXPERIMENTAL SET UP
Table I shows the system configuration used in
setting up the Beowulf cluster. All experiments
undertake in this research uses a set of 1, 2, 4
and 8 nodes respectively.

Fig.1: System Architecture

Table I: Target Architecture

of nodes 1-8
of cores per node 4
Memory per node 4GB
Open MPI version 1.4.2
Make Dell 390 Optiplex
Processor Intel core i5
OS Ubuntu 12.04LTS
Clock Frequency: 2.5GHz

RESULTS

The performance of Quick sort, Matrix
Multiplication, Montecarlo, LU Decomposition
on the proposed architecture is as follows:

Fig. 2 to 5 presents performance of each
programming model (OpenMP, MPI and
Hybrid) for the Benchmark program discussed.

427

 International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015
 ISSN: 2395-3470

www.ijseas.com

Fig.2: Comparison of OpenMP, MPI and Hybrid
programs for Quick sort

Fig.3: Comparison of OpenMP, MPI and Hybrid
programs for Matrix Multiplication

Fig.4: Comparison of OpenMP, MPI and Hybrid
programs for Montecarlo

Fig.5: Comparison of OpenMP, MPI and Hybrid programs
for LU Decomposition

Fig. 6 to 9 shows the average performance
increase of MPI and Hybrid with respect to
OpenMP programming. Clearly Hybrid
outperform the MPI implementation.

Fig.6: Time Enhancement Of hybrid and MPI with
respect to OpenMP parallel programming model for Quick
sort

428

 International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015
 ISSN: 2395-3470

www.ijseas.com

Fig.7: Time Enhancement Of hybrid and MPI with
respect to OpenMP parallel programming model for
Matrix Multiplication

Fig.8: Time Enhancement of hybrid and MPI with respect
to OpenMP parallel programming model for Montecarlo

Fig.9: Time Enhancement Of hybrid and MPI with
respect to OpenMP parallel programming model for LU
Decomposition

Fig. 10 to 13 outlines the performance of Hybrid
and MPI with respect to OpenMP for 1,2,4 and 8
cores. The evidence provides the hybrid model
having an upperhand for all the Benchmark
programs.

Fig.10: Performance Analysis core wise for Quick sort

Fig.11: Performance Analysis core wise for Matrix
Multiplication

Fig.12: Performance Analysis core wise for Montecarlo

429

 International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015
 ISSN: 2395-3470

www.ijseas.com

Fig.13: Performance Analysis core wise for LU
Decomposition

CONCLUSION
 The three parallel versions of benchmark
programs: shared memory (with OpenMP),
message-passing (with MPI) and Hybrid (with
MPI and OpenMP) is been introduced.
While others have developed algorithms with
either multi-threading or message-passing, this
paper work offers efficient hybrid
implementations. The use of hybrid
implementation is straightforward; it has led us
to a better speedup, to the readily existing high-
performance instances. The overall performance
of hybrid programming model results in an
increase of 30%.
 The work presented here is been extended
to other benchmarks at larger scale and to begin
developing various benchmarks specialized for
the Hybrid approach. It is also observed that for
certain benchmarks programs MPI proves to be
better due to the fact that they are totally
computation intensive application and spent
lesser time on communication. One such
benchmark used in the project was LU-
Decomposition. To further increase the
throughput of the Hybrid system better
networking technologies may be used like
InfiniBand, OpticFibre etc. MPI runtime
parameters may be tuned for better performance
by hybrid model.

REFERENCES

[1] Cormen, Thomas H.; Leiserson, Charles
E.; Rivest, Ronald L.; Stein, Clifford,
Introduction to Algorithms (3rd ed.),
MIT Press, 2009.

[2] LaMarca, Anthony; Ladner, Richard, The

influence of caches on the performance
of sorting. Proc. 8th Ann. ACM-SIAM
Symposium on Discrete Algorithms
(SODA97), 370–379.

[3] R.Biswas and R. C. Strawn,A new

procedure for dynamic adaption of three
dimensional unstructured grids. Applied
Numerical Mathematics, 13:437–452,
1994.

[4] Whaley R. C., Petitet A., Dongarra J. J.,
“Automated empirical optimizations of
software and the ATLAS project”
Parallel Computing 27, 1.2 (2001), 3-35.

[5] Ayguade, E. Copty, N., Duran, A.,

Hoeflinger, J. The Design of OpenMP
tasks‖, IEEE Transactions on Parallel and
Distributed systems, volume: 20, Issue:
3, pp. 404-418, June 2008.

[6] Early Experiments with OpenMP/MPI

Hybrid Programming Model Ewing Lusk
and Anthony Chan, Mathematics and
Computer Science Division Argonne
National Laboratory, ASCI FLASH
Center, University of Chicago.

[7] Daniel Lorenz, Peter Philippen, Dirk
Schmidl and Felix Wolf:"Profiling of
OpenMP Tasks with Score-P". In Proc.
Of the 41st International Conference on
Parallel Processing Workshops(ICPPW),
Workshop on Parallel Software Tools
and Tool Infrastructures(PSTI),
Workshop on Parallel Software Tools
and Tool Infrastructures(PSTI), pages
444-453, September 2012

430

 International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015
 ISSN: 2395-3470

www.ijseas.com

[8] Dixie Hisley, Gagan Agrawal, Punyam

Satya-narayana, and Lori Pol-lock,
Porting and performance evaluation of
irregular codes using OpenMP. In In
proceesing of First European Workshop
on OpenMP (EWOMP 1999), Lund,
Sweden, pages 47–59, 1999.

[9] Timothy G. Mattson. How good is
openmp. Scientific Programming,
11(2):81–93, 2003.

[10] Milind Kulkarni, Keshav Pingali, Bruce
Walter, Ganesh Ramanarayanan, Kavita
Bala, and L. Paul Chew. Optimistic
parallelism requires abstractions. In
Proceedings of the 2007 ACM SIGPLAN
con-ference on Programming language
design and implementation (PLDI 2007),
San Diego, CA, USA, pages 211–222,
2007

[11] Jarek Nieplocha, Andres` Marquez,´
John Feo, Daniel Chavarr´ıa- Miranda,
George Chin, Chad Scherrer, and
Nathaniel Beagley, Evaluating the
potential of multithreaded platforms for
irregular scientific computations. In
Proceedings of the 4th international
conference on Computing frontiers (CF
2007), Ischia, Italy, pages 47– 58, 7–9
May 2007.

[12] OpenMP,The OpenMP API
specification for parallel programming
http:// openmp .org/wp/, 1998.

[13] Simone Secchi, Antonino Tumeo, and
Oreste Villa. A bandwidth optimized
multi-core architecture for irregular
applications. In Proceed-ings of 12th
IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing,
(CCGrid 2012), Ottawa, ON, Canada,
pages 580–587, 13–16 May 2012.

[14] D.S. Henty, Performance of hybrid
message-passing and shared-memory
parallelism for discrete element
modeling. In Proceedings of the 2000
ACM/IEEE conference on
Supercomputing (CDROM), page 10,
Dallas, Texas, United States, 2000.

[15] T. Satish Kumar, S Sakthivel, Sushil
Kumar S, May 2014. Optimizing code by
selecting Compiler flags using Parallel
Genetic Algorithm on Multicore CPUs,
International Journal of Engineering and
Technology, Vol 6, No 2 .

[16] Rabenseifner, R., “Hybrid Parallel
Programming: Performance Problems
and Chances”, Proceedings of the 45th
Cray User Group Conference, Ohio, May
12-16, 2003.

[17] Y. He and C. H. Q. Ding. MPI and
OpenMP paradigms on cluster of SMP
architectures: the vacancy tracking
algorithm for multi-dimensional array
transposition. In Proceedings of the 2002
ACM/IEEE conference on
Supercomputing, Baltimore, Maryland,
USA, IEEE Computer Society
Press,2002.

[18] The OpenMP specification for parallel
programming. Retrieved on March 1,
2011 from http://openmp.org.

[19] Radenski, A. Shared Memory, Message
Passing, and Hybrid Merge Sorts for
Standalone and Clustered SMPs. Proc.
PDPTA’11, the 2011 International
Conference on Parallel and Distributed
Processing Techniques and Applications,

431

 International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015
 ISSN: 2395-3470

www.ijseas.com

CSREA Press (H. Arabnia, Ed.),
pp. 367 – 373,2011.

[20] Aaftab Munshi. The opencl
specification. Khronos OpenCL Working
Group, 1:l1–15, 2009.

[21] T.Satish Kumar,S Sakthivel and
Manjunatha Swamy M, “Optimizing MPI
Communication using Heuristic
Algorithms” Asian journal of information
technology 13(11),700-706.

[22] R. Eigenmann and B.R. de Supinski
(Eds): IWOMP 2008, LNCS 5004, pp.
36–47, 2008. Springer-Verlag Berlin
Heidelberg, 2008.

[23] John J. Buoni,Paul A. Farrell and Arden
Ruttan, ”Algorithms for LU
decomposition on a shared memory
Multiprocessor”,1993, 925-937.

432

	SYSTEM ARCHITECTURE

