
International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015
 ISSN: 2395-3470

www.ijseas.com

EFFICIENT DETECTION OF INCONSISTENCIES OF
DISTRIBUTED DATA IN CLOUD USING

INCREMENTAL VIOLATION DETECTION

S. Anantha Arulmary1 and N.S. Usha2
1Student, Department of Computer Science, Sir Issac Netwon College of Engineering and

Technology, Pappakoil, Nagapattinam, India
2 Assistant Professor, Department of Computer Science, Sir Issac Netwon College of

Engineering and Technology, Pappakoil, Nagapattinam, India

ABSTRACT
This paper investigates the problem of

incremental detection of errors in distributed
data. In many distributed environments, the
primary function is to detect the violation in data
using various constrains, that is, instances data
does not follow the constrain. Existing
approaches for detecting such inconsistent data
state at all times, even during normal operation,
and thus incur wasteful resource overhead. In
this project, we propose efficient schemes for the
inconsistencies detection problem, which we
model as one of detecting the violation of global
constraints defined over distributed system
variables. Our approach eliminates the need to
continuously track the data by composing
multiple constraints into single constraint using
new mechanism called shard query that can be
checked efficiently at each data. Only in the
occasional event that a local constraint is
violated, do we resort to more expensive global
constraint checking. We formulate the problem
of selecting constraints as an optimization
problem that takes into account and objective is
to minimize communication costs.

Keywords— Shared Query Technique,
Horizontal and vertical partition, Elastic
Compute Cloud(EC2), Conditional functional
dependencies, Distributed Data.

I. INTRODUCTION

Real life data is often dirty. To clean the data,
efficient algorithms for detecting errors have to
be in place. Errors in the data are typically
detected as violations of constraints (data quality
rules), such as functional dependencies (FDs),
denial constraints, and conditional functional
dependencies (CFDs). When the data is in a
centralized database, it is known that two SQL
queries suffice to detect its violations of a set of
CFDs. It is increasingly common to find data
partitioned vertically or horizontally, and
distributed across different sites. This is
highlighted by the recent interests in SaaS and
Cloud computing, MapReduce and columnar
DBMS. In the distributed settings, however, it is
much harder to detect errors in the data.

In Existing model, No conditional functional

dependencies and no Error detection in
distributed data. SQL Queries are used to detect
its violations of CFDs. Applicable only for
centralized Database, Cannot be used for
Distributed Database in cloud.

1.1 Heuristic algorithm
These algorithms, usually find a solution close

to the best one and they find it fast and easily.
Sometimes these algorithms can be accurate, that
is they actually find the best solution, but the

324

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015
 ISSN: 2395-3470

www.ijseas.com

algorithm is still called heuristic until this best
solution is proven to be the best. The method
used from a heuristic algorithm is one of the
known methods, such as greediness, but in order
to be easy and fast the algorithm ignores or even
suppresses some of the problem's demands.

1.2 Hashing Algorithm (MD5)
The MD5 message-digest algorithm is a

widely used cryptographic hash
function producing a 128-bit (16-byte) hash
value typically expressed in text format as a 32
digit hexa decimal number. MD5 has been
utilized in a wide variety of cryptographic
applications, and is also commonly used to
verify data integrity

MD5 was designed by Ron Rivest in 1991 to
replace an earlier hash function,MD4.

In 1996 a flaw was found in the design of
MD5. While it was not deemed a fatal weakness
at the time, cryptographers began recommending
the use of other algorithms, such as SHA-1
which has since been found to be vulnerable as
well. In 2004 it was shown that MD5 is
not collision resistant. As such, MD5 is not
suitable for applications
like SSL certificates or digital signatures that
rely on this property for digital security. Also in
2004 more serious flaws were discovered in
MD5, making further use of the algorithm for
security purposes questionable; specifically, a
group of researchers described how to create a
pair of files that share the same
MD5 checksum. Further advances were made in
breaking MD5 in 2005, 2006, and 2007. In
December 2008, a group of researchers used this
technique to fake SSL certificate
validity, and CMU Software Engineering
Institute now says that MD5 "should be
considered cryptographically broken and
unsuitable for further use", and most U.S.
government applications now require the SHA-
2 family of hash functions.

1.3 Map Reducing Algorithm
A. MapReduce is a software framework that
allows developers to write programs that process
massive amounts of unstructured data in parallel
across a distributed cluster of processors or
stand-alone computers. MapReduce is a software
framework that allows developers to write
programs that process massive amounts of
unstructured data in parallel across a
distributed cluster of processors or stand-alone
computers. It was developed at Google for
indexing Web pages and replaced their original
indexing algorithms and heuristics in 2004.
The framework is divided into two parts:
• Map, a function that parcels out work to

different nodes in the distributed cluster.
• Reduce, another function that collates the

work and resolves the results into a single
value.

• The MapReduce framework is fault-
tolerant because each node in the cluster is
expected to report back periodically with
completed work and status updates. If a node
remains silent for longer than the expected
interval, a master node makes note and re-
assigns the work to other nodes.

1.4 Incremental Algorithm

An incremental algorithm updates the solution
to a problem after an incremental change is
made on its input. In the application of an
incremental algorithm, the initial run is
conducted by an algorithm that performs the
desired computation from scratch and the
incremental algorithm is used in the subsequent
runs (i) using information from earlier
computations and (ii) to reflect the update on the
network while avoiding re-computations as
much as possible. The computation of between’s
centrality depends on the number of shortest
paths in a network and the intermediate nodes on
these paths. A network update such as an edge
insertion or edge cost decrease might result in

325

http://en.wikipedia.org/wiki/SHA-1
http://en.wikipedia.org/wiki/Collision_resistant
http://en.wikipedia.org/wiki/Transport_Layer_Security
http://en.wikipedia.org/wiki/Public_key_certificate
http://en.wikipedia.org/wiki/Digital_signature
http://en.wikipedia.org/wiki/Checksum
http://en.wikipedia.org/wiki/CMU_Software_Engineering_Institute
http://en.wikipedia.org/wiki/CMU_Software_Engineering_Institute
http://en.wikipedia.org/wiki/SHA-2
http://en.wikipedia.org/wiki/SHA-2
http://searchexchange.techtarget.com/definition/cluster
http://searchcio-midmarket.techtarget.com/definition/processor
http://whatis.techtarget.com/definition/algorithm
http://whatis.techtarget.com/definition/heuristic
http://whatis.techtarget.com/definition/function
http://searchcio-midmarket.techtarget.com/definition/fault-tolerant
http://searchcio-midmarket.techtarget.com/definition/fault-tolerant

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015
 ISSN: 2395-3470

www.ijseas.com

creation of new shortest paths in the network.
However, a considerable portion of the older
paths might remain intact, especially in the
unaffected parts of the network. Therefore,
accurate Maintenance of the number of shortest
paths and the

Predecessors on the shortest paths will suffice
for accurately updating between’s values in the
case of dynamic network updates. This is the
key observation we make in the design of our
incremental betweenness centrality algorithm.

Ad Hoc Networks (MANETs) consists of a
collection of mobile nodes which are not
bounded in any infrastructure. Nodes in MANET
can communicate with each other and can move
anywhere without restriction. This non-restricted
mobility and easy deployment characteristics of
MANETs make them very popular and highly
suitable for emergencies, natural disaster and
military operations.

Nodes in MANET have limited battery power
and these batteries cannot be replaced or
recharged in complex scenarios. To prolong or
maximize the network lifetime these batteries
should be used efficiently. The energy
consumption of each node varies according to its
communication state: transmitting, receiving,
listening or sleeping modes. Researchers and
industries both are working on the mechanism to
prolong the lifetime of the node’s battery. But
routing algorithms plays an important role in
energy efficiency because routing algorithm will
decide which node has to be selected for
communication.

The main purpose of energy efficient
algorithm is to maximize the network lifetime.
These algorithms are not just related to
maximize the total energy consumption of the
route but also to maximize the life time of each
node in the network to increase the network
lifetime. Energy efficient algorithms can be
based on the two metrics: i) Minimizing total
transmission energy ii) maximizing network
lifetime. The first metric focuses on the total
transmission energy used to send the packets
from source to destination by selecting the large

number of hops criteria. Second metric focuses
on the residual batter energy level of entire
network or individual battery energy of a node
[1].

II. LITERATURE SURVEY
In Algorithms for computing provably near-

optimal (in terms of the number of messages)
local constraints. Experimental results with real-
life network traffic data sets demonstrate that our
technique can reduce message communication
overhead by as much as 70% compared to
existing data distribution-agnostic approaches.
[1]

The incremental algorithm over vertical
partitions to reduce data shipment. They are
verify experimentally, using real-life data on
Amazon Elastic Compute Cloud (EC2), that our
algorithms substantially outperform their batch
counterparts.[2]

Computing an optimal global evaluation plan
is shown to be NP-hard. Finally, we present an
implementation of our algorithms, along with
experiments that illustrate their potential not only
for the optimization of exploratory queries, but
also for the multi-query optimization of large
batches of standard queries. [3]

Along with experiments that illustrate their
potential not only for the optimization of
exploratory queries, but also for the multi-query
optimization of large batches of standard queries.
[4]

Addresses the problem of finding efficient
complete local tests for an important class of
constraints that are very common in practice:
constraints expressible as conjunctive queries
with negated sub goals. For constraints where the
predicates for the remote relations do not occur
more than once, we present complete local tests
under insertions and deletions to the local
relations. These tests can be expressed as safe, no
recursive Data log queries against the local
relations. These results also apply to other
constraints with negation that are not
conjunctive. [5]

326

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015
 ISSN: 2395-3470

www.ijseas.com

The MapReduce is a programming model and
an associated implementation for processing and
generating large datasets that is amenable to a
broad variety of real-world tasks. Users specify
the computation in terms of a map and
a reduce function, and the underlying runtime
system automatically parallelizes the
computation across large-scale clusters of
machines, handles machine failures, and
schedules inter-machine communication to make
efficient use of the network and disks.
Programmers find the system easy to use: more
than ten thousand distinct MapReduce programs
have been implemented internally at Google over
the past four years, and an average of one
hundred thousand MapReduce jobs are executed
on Google's clusters every day, processing a total
of more than twenty pet bytes of data per day. [6]

In the class of integrity constraints for
relational databases, referred to as conditional
functional dependencies (CFDs), and study their
applications in data cleaning. In contrast to
traditional functional dependencies (FDs) that
were developed mainly for schema design, CFDs
aim at capturing the consistency of data by
enforcing bindings of semantically related values.
For static analysis of CFDs we investigate the
consistency problem which is determine whether
or not, there exists a nonempty database
satisfying a given set of CFDs, and the
implication problem, which is to decide whether
or not a set of CFDs entails another CFD. We
show that while any set of transitional FDs is
trivially consistent, the consistency problem is
NP-complete for CFDs, but it is in PTIME when
either the database schema is predefined or no
attributes involved in the CFDs have a finite
domain. For the implication analysis of CFDs,
we provide an inference system analogous to
Armstrong's axioms for FDs, and show that the
implication problem is coNP-complete for CFDs
in contrast to the linear-time complexity for their
traditional counterpart. We also present an
algorithm for computing a minimal cover of a set
of CFDs. Since CFDs allow data bindings, in
some cases CFDs may be physically large,

complicating the detection of constraint
violations. We develop techniques for detecting
CFD violations in SQL as well as novel
techniques for checking multiple constraints by a
single query. We also provide incremental
methods for checking CFDs in response to
changes to the database. We experimentally
verify the effectiveness of our CFD-based
methods for inconsistency detection. This work
not only yields a constraint theory for CFDs but
is also a step toward a practical constraint-based
method for improving data quality [7].

In top-down join enumeration algorithm that is
optimal with respect to the join graph. We
present performance results demonstrating that a
combination of optimal enumeration with search
strategies such as branch-and-bound yields an
algorithm significantly faster than those
previously described in the literature. Although
our algorithm enumerates the search space top-
down, it does not rely on transformations and
thus retains much of the architecture of
traditional dynamic programming. As such, this
work provides a migration path for existing
bottom-up optimizers to exploit top-down search
without drastically changing to the
transformational paradigm. [8]

III. PROPOSED METHOD
In our proposed system, to reduce data

shipment, e.g., counters pointer and tags in base
relations. While these could be incorporated into
our solution, they do not yield bounded/optimal
incremental detection algorithms. There has also
been a host of work on query processing and
multi-query optimization for distributed data.
The former typically aims to generate distributed
query plans, to reduce data shipment or response
time and Error Deduction.

327

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015
 ISSN: 2395-3470

www.ijseas.com

A. Description of the Proposed Method:

DFD Level 0
Create Cloud

Instances

Dynamic
Partitioning

CFD
Violations
Detection

Partition
Optimization

Amazon Cloud DB

Content
Index

Fig 1. Data flow diagram for Proposed Model.

The steps involved in our approach are as
follows:

Step 1: Data fragmentation
In relations D of schema R that are

partitioned into fragments, either vertically or
horizontally. In some application one wants to
partition D into (D1, . . . ,Dn) horizontal partition
and in some case it may be vertical. This process
is mainly due to reduce the communication cost.

Step 2: CFD Violations Detection

An algorithm for detecting violations of
CFDs for vertical and horizontal partitions.
Leveraging the index structures, an incremental
algorithm is used to detect violations in vertical
partitions. At first it considers a single update for
a single CFD. then extend the algorithm to
multiple CFDs and batch updates.

Step 3: Partition Optimization

To reduce data shipment for error detection
in vertical partitions. The idea is to identify and
maximally share indices among CFDs such that
when multiple CFDs demand the shipment of the
same tuples, only a single copy of the data is
shipped. The problem for building optimal

indices is NP-complete, but provides an efficient
heuristic algorithm. It also provides an
incremental detection algorithm for horizontal
partitions. The algorithm is also optimal, as for
its vertical counterpart. A tuple may be large. To
reduce its shipping cost, a natural idea is to
encode the whole tuple, and then send the coding
of the tuple instead of the tuple.

Step 4:Shared Query Technique
 Shard-Query is a high performance

MySQL query engine for which offers increased
parallelism compared to stand-alone MySQL.
This increased parallelism is achieved by taking
advantage of MySQL partitioning, MySQL
sharding, common MySQL query clauses like
BETWEEN and IN like etc,. The shard Query
Technique is used, to enable parallel query
processing to improve the query engine
performance and to reduce the query processing
timing.

In this above figure shows the overall

architecture of Distributed data in cloud. MD5
(Message-Digest algorithm 5) is a widely used
cryptographic hash function with a 128-bit hash
value. We use MD5 in our implementation to

328

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015
 ISSN: 2395-3470

www.ijseas.com

further reduce the communication cost, by
sending a 128-bitMD5 code instead of an entire
tuple.

IV. CONCLUSION
We studied the problem of detecting CFD

violations in distributed cloud databases. The
novelty of our work consists in (1) a formulation
of CFD violation detection as optimization
problems to minimize data shipment or response
time, (2) the NP-completeness of these
optimization problems when the data is
partitioned either vertically or horizontally, (3)
algorithms to detect CFD violations in
horizontally partitioned data, aiming to minimize
either data shipment or response time, (4) a
characterization of locally checkable CFDs for
vertically partitioned data in terms of
dependency preservation, and the intractability
of minimally refining a vertical partition to make
it dependency preserving. As verified by our
experimental results, the algorithms scale well
with respect to the size of data, the number of
fragments, and the complexity of CFDs, and
hence provide effective methods for catching
inconsistencies in distributed data. A more
interesting topic is to develop techniques for
detecting errors in distributed databases that are
both vertically and horizontally partitioned
(a.k.a. hybrid fragmentation). In the distributed
setting it is also common to find replicated data .
It is more interesting yet more challenging to
develop detection algorithms that capitalize on
data replication to increase parallelism and
reduce response time. Furthermore, load
balancing has proved effective for reducing the
response time of distributed query processing.
While our detection algorithms distribute
detecting processes to distinct sites to balance
the workload and explore parallel executions,
this issue deserves a full treatment for violation
detection in distributed databases.

 REFERENCES

[1] S. Agrawal, S. Deb, K. V. M. Naidu, and R.
Rastogi, “Efficient detection of distributed
constraint violations,” in Proc. ICDE,
Istanbul, Turkey, 2007.

[2] J. Bailey, G. Dong, M. Mohania, and X.
S.Wang, “Incremental view maintenance by
base relation tagging in distributed
databases,” Distrib. Parall.
Databases, vol. 6, no. 3, pp. 287–309, Jul.
1998.

[3] L. F. Mackert and G. M. Lohman, “R*
optimizer validation and performance
evaluation for distributed queries,” in Proc.
VLDB Kyoto, Japan, 1986.

[4] Kementsietsidis, F. Neven, D. Craen, and S.
Vansummeren, “Scalable multi-query
optimization for exploratory queries over
federated scientific databases,” in Proc.
VLDB, Auckland, New Zealand, 2008.

[5] N. Huyn, “Maintaining global integrity
constraints in distributed databases,”
Constraints, vol. 2, no. ¾, , pp. 377–399,
1997.

[6] J.Dean and S. Ghemawat, “MapReduce:
Simplified data processing on large
clusters,” in Proc. OSDI, 2004.

[7] W. Fan, F. Geerts, X. Jia, and A.
Kementsietsidis, “Conditional functional
dependencies for capturing data
inconsistencies,” ACM Trans. Database
Syst., vol. 33, no. 2, Article 6, Jun. 2008.

[8] D. DeHaan and F. W. Tompa, “Optimal top-
down join enumeration,” in Proc. ACM
SIGMOD, New York, NY, USA, 2007.

329

	I. INTRODUCTION
	A. MapReduce is a software framework that allows developers to write programs that process massive amounts of unstructured data in parallel across a distributed cluster of processors or stand-alone computers. MapReduce is a software framework that allows d�

	II. Literature survey
	III. Proposed method
	A. Description of the Proposed Method:

	IV. Conclusion

