

SHIFTTING BOTTLENECK ALGORITHM FOR JOB SHOP SCHEDULING PROBLEM

Lokesh Kumar sahu, Dr.SridharK⁺

¹ M.Tech.Scholar, Dept.of Mechanical Engg. CSIT, Drug. ² ⁺Professor in Mansa Polytechnic College as a Mechanical Engg. Bhilai.

Abstract

The job shop scheduling is typical task which can optimize the utilization facilities in this paper scheduling problem for 5 jobs on 5 machine is presented to determine the optimal priority sequence of the jobs shifting bottleneck algorithm is considered the make span obtained from the algorithm is compare with lekin software.

Keywords: job shop scheduling; make span time bottleneck heuristic algorithms, lekin soft ware.

1. Introduction

To minimize the make span in a job shop by using Shifting bottle neck is one of the efficient procedures. It follows the pre-defined machines sequence always in one machine with bottleneck processing sequences. Through iterative method the heuristic algorithm is used to minimize the bottleneck process by finding maximum make span time (Cmax) and maximum lateness time (Lmax).

Many researches is focus on this area. By Jilcha Kassu & Berhan Eshetie (2015) [2] - with Shifting Heuristic Bottleneck, Job Shop Scheduling Problem for Machine Shop. By Jinliang Cheng Yoshiyuki Karuno Hiroshi Kise(2001)- Shifting bottle neck approach for flow shop scheduling problem . Mohd Salleh Abdul Rahim (2011)[3] – consider 3 machine flow shop problem using bottleneck heuristic algorithms to given optimum solution. Riza A. Rahman, Budi Santosa, and Stefanus E. Wiratno (2014)[5]: This paper combines the differential algorithm with bottleneck heuristic for two-objective Minimization makes span time. Salleh Ahmad BAREDUAN, Sulaiman HASAN (2010), using bottleneck-based algorithms, effective make span & developed to solve for near-optimal heuristic scheduling sequence. . In this paper we have used bottleneck heuristic algorithms is to be developed to

Minimize the maximum completion make span time. The result obtained is to be compared with lekin software.

2. LITERATURE REVIEW:

The objective of this paper is used to minimize the make-span : total time. Most of the Research Work done on the field of flow shop scheduling problem. Chun-LungChen & Chuen Lung Chen (2009)-The main purpose of this paper is to minimize the make span flow-line with the use of bottleneck -based heuristic; In this they proposed three machines for typical flow-shop. Ciaxia Jing, Guochun Tang & Xingsan Qian(2008)- A heuristic algorithm is used for two machine re-entrant in flow shop scheduling problem to minimize the make span time, it also shows some assumptions, before developing a identified. schedule. have to be Anurag Agrawal, Selcuk Colak and Enes Eryarsoy (2006)author used a different approach by using heuristic based on adaptive learning, and also used upper bound solution to compare results. Li Xiaoping,Liu Lianchen & Wu Cheng (2006) A heuristic fast method is used in solve a large-scale flow shop scheduling by heuristic fast method. They compute the completion time of flow-shop by using completion time computing method. Pawal Jan Kalczynski & Jerzy Kamburowski(2005)- A heuristic algorithm is used to minimize the make span time in flow shop scheduling. the author focus on m-machine flow shop problem; this problem is also called NPhard. Chun-Lung (2009) A heuristic bottle neckbased algorithm is used to minimize total make span time for flexible flow line. Salleh Ahmad Bareduan, Sulaiman Hasan (2010)-Make span Algorithms and Heuristic for Manufacturing Process Using Bottleneck Approach

3. METHODOLOGY: In Job Shop Scheduling Problem; there are number of optimization method used. The methods are

Traditional Technique:

- 1. Mathematical programming-Integer programming, Goal programming, Dynamic programming, Liner programming, Branch and bound method, Genetic method, mixed integer liner programming, Transportation, Network, cutting plane/ column generation method
- 2. Enumerate procedure Decomposition
- 3. Lagrangian relaxation
- 4. Efficient Methods

Non Traditional Techniques

- Methods 5. Constructive (priority rules, dispatching rules)
- 6. Insertion Algorithms (Bottleneck heuristic, shifting bottleneck procedure)
- 7. Evolutionary programs (Genetic Algorithms)
- 8. Local search techniques (ant colony optimization, tabu search, simulated annealing, problem space method, heuristic method)
- 9. Iterative methods: (Artificial intelligence techniques)
- 10. Heuristics algorithms (NEH, CDS, Palmers)
- 11. Beam search & Hybrid Technique

Shifting Bottleneck Heuristics:

Algorithms:

1. Initialization

- M0 = (job shop scheduled machines)
- Cmax = Maximum make span time
- 2. (Choice of machine.) For each Mi 2 M -M0,
- Create the 1|rj|Lmax schedule

Find out L|max(i).

- 3. Scheduling is bottleneck machine
- k be the machine that maximizes Lmax(i) Schedule k by the solution of !|rj|Lmax

Form the 1|rj|Lmax

Consider 5 jobs & 5 machine problem

J-m	M1	M2	M3	M4	M5
J1	4	2	2	12	3
J2	3	1	2	12	1
J3	5	3	4	11	4
J4	6	4	3	12	3
J5	7	2	4	14	4

Step 1st: Total load of each machine

M1 = 4 + 3 + 5 + 6 + 7 = 25, M2 = 2 + 1 + 3 + 4 + 2 = 12, M3=2+2+4+3+4=15

M4=12+12+11+12+14=61, M5=3+1+4+3+4=15

Make span Cmax = 61 (longest path)

Start with LB of 61 on M4 because it has the highest load among the 5 machines

Machine 4 is the bottleneck max to M4

LB=27 (M4)

dj = Cmax - Node values on right side

Job	J1	J2	J3	J4	J5
Pi	12	12	11	12	14
Ri	8	6	12	13	13
Di	58	60	57	58	57

pj = Processing time for job j.

rj = Earliness for job j. dj = j job for Due date

We have a five possible sequence to apply

Seq.(1)	J1	J2	J3	J4	J4
СТ	20	32	43	55	69
DD	58	60	57	58	57
LP	-38	-28	-14	-3	12

So longest path is 12

Seq.(2)	J2	J3	J4	J5	J1
СТ	18	29	41	55	67
DD	60	57	58	57	58
LP	-42	-28	-17	-2	9

Longest path is 9

Seq.(3)	J3	J4	J5	J1	J2
СТ	23	35	49	61	73
DD	57	58	57	58	60
LP	-34	-23	-8	3	13

Longest path is 13

Seq.(4)	J4	J5	J1	J2	J3
СТ	25	39	51	63	74
DD	58	57	58	60	57
LP	-33	-18	-7	3	17

Longest path is 17

Seq.(5)	J5	J1	J2	J3	J4
СТ	27	39	51	62	74
DD	57	58	60	57	58
LP	-30	-19	-9	5	16

Longest path is 16

Among the following sequence the lowest path is 9 so we have choose a LB technique 9 LB=9 we have a 4 possible sequence J2-1,J2-3,J2-4 & J2-5 We find J2-1= Longest path 10, J2-3= Longest path 9 J2-4= Longest path 10, J2-5= Longest path 9 The sequence lowest path is 9 So we have 3 possible sequences J2-3-1= Longest path 10 J2-3-4= Longest path 9 J2-3-5= Longest path 9 Above sequence lowest path is 9 so we have 2 possible sequences. J2-3-4-1= Longest sequence 10 & J2-3-4-5= Longest sequence 9.

i.e Cmax = higest load +Lmax =61+9=70 hr

Bottleneck heuristic algorithms make span time is giving 70 hr.

4. Lekin: In Generic job shop scheduling system ,it contains a number of scheduling & heuristics algorithms , & its allow the user to link and test his own heuristics and compare their performance with the heuristics algorithms that are embedded in the system. The Lekin system can be accommodating various machine environments:

(1) Single machine (2) Parallel machine (3) Flow shop (4) Flexible flow shop (5) Job shop

In the lekin software, firstly the user can select a menu in machine environment & enter the all necessary machine data and job data manually. In the main menu the user also has the option of opening an existing data file. An existing file contains the data with the machine environments And specific set of jobs. If the user wants to open an existing file & make changes in the file and work in the modified file. At last the user can save the modified file with a new name. If the user wants to enter a data set that is completely new, firstly the user must select a machine environment, the dialog box appears where he has to enter the most basic information. i.e. the number of work centers and the number of schedules. After the user has done, a second dialog box appears and where the user enters the more detailed work center information .i.e. the no. of machine at the work center with their availability and the details needed to determine the setup times on each machine .In the third dialog box the user has to enter the detailed information related with the job

🍓 Machine Park - Machines * (Ordinar	(Workceri	ters)	C	🔨 Job Pool - Jobs * (Flow Shop)				
	+ ⁰	1		₽₽₽₽₽₽₽₽₽	+ ⁰ 0 - ⁰			
D	MCs	Avai	9tatus	D	Wght	Rs	Due	Prim.
TIM	1	O	Å	₽- <mark>₩</mark>	1	0	0	23
WW	1	Q	Å	∏ — <mark>₩0:</mark>	1	0	0	19
mu	1	O	Å	₽ −- <mark>JW3</mark>	1	0	0	27
104	1	O	Å	₽ −- J ₩4	1	0	0	28
W005	1	I	Å	H-J005	1	Q	0	31

₫6	ant: Chart - Se	çş (General	58 Routin	e/sum(C	0																				2	. 8
5	<u>)</u> h /	80	¢0		•	0																				
	.1.1	. 6 . 8	. D . 1	1	1	13 20	2.3	2.2	30	2	4.3	я.	9.9	4	4. 4 1. 1	. și	ą.,	54 <u>5</u> 5	. 1 .	٩.	1.9	. 65	6	1.1	1.1	18 8
M	M	105	M	W			Mi																			
NC.			E.	M		10		105																		
WB		902		RG I	10		104		D05																	
NI.			D	1			M				M				鵩					15						
WS						M			Ĩ	6								104				[麗	5		
~	-				_				_	Ĭ.	_	_		-	_	_	_	_	_	_	_	_	_			
93	equence - Seq	: * (General	S8 Routin	e/sum(C))		[0 8	I	1 ,1	te Pool -	· Jots* (Flow Sho	p)											[0 8
) 1	equence - Seq Sol (10)	:"(General 8 🖪 🖊	S8 Routin	e / sum(C))		[- 8	8	へ 」 注	tt Pool-	- Jobs* (*	Flow Sho	p)	a "8	0_3									[0 8
و ر ا	equence - Seq Se (D) (Seq Se (D) (Seq No	s" (General B	58 Routin	e/sum(C) Setup)	Ìai	(310	c D Ath		1	th Pool-	- Jobs* (* 	Flow Sho Cal _ P	p)	a "a Wdt	8 .3 R		Due	Ra	L	ीर्थ	Bq	ŋ	End	[- 8 vī
3 3	equence - Seq S B Q é No	: "(General 8 <u>0</u> <u>/</u> h/Job	SB Routin	e/sum(C) Setup 0)	Ìat	(3100	- E Ain D		1 ↓ 1 1 1 1 1 1 1 1 1 1 1 1 1	th Pool Si Be	- Jots * (* 	Flow Sho Call 4	p)	a "a Wołt 1	8 - 8 Re		Due	Patr 25	1	St.	Ba	n	End 44	[] T] 4	- 8 vī 4
	equence - Seq Si (b) (D) (d Ito VIII (VIII) VIII (VIII)	: " (General B 🔁 📕	SB Routin	e / sum(C) Setup 0)	àat	(Stop	- 8 Rún D			th Pool Si By I By I By I By I By I By I By I By I	- Jots * (*] [] []]	Flow Sho C	p)	0 .8 Waht 1	8 -8 Re 0		Due U	Pair 25 19	L	ीत	Bo	n	End 44 19	T 44 19	0 8 1 1 1 1
	equence - Seq 2 b Q é 10 001000 001000	: * (General 8 💁 🖉 h / Job	SB Routin	e / sum(C) Setup 0 0)	Ìat	Stop	- E Pún 12 15			tt Pcol	- Jobs * (* [] [] [] [] [] [] [] [] [] [] [] [] []	Flow Sho	p)	0 .8 Wdt 1 1	8 _3 R: 0		Due Due D	Aar B D D		ीर्थ	80 8 0	n 	End 44 19	T 44 19 33	0 8 11 14 19 33
	equence - Seq 2 b Q é 10 10 10 10 10 10 10 10 10 10	s " (General B 🔄 🗡 h / Job	58 Routir	e / sum(C) Setup 0 0 0) ! 	ोग	9100	- E Pún 12 15 61			tt Pool 3 B 	- Joes* ([]]] []] []] []] []] []] []] [Flow Sho C	(1)	1 1 1	8_3 R 0		De 0 0	Air B D D N		ीत	80 8 0 3	n 	End 44 19 33 36	T 44 19 33 56	□ B 11 12 13 15 15

Gant	t Chart - Scep (Local Scene	h/son(C)														
51	1 / 840	÷														
	1 4 4 1 1	0 12 14 19	. 11 2	1.1	3 3 3	E M B	3.0.0		5 5	9.9	9 R	£ 8	88	3.3	1.7	3.1
W	102 103	714 7		105												
500				III:												
510		15			104 10 <u>5</u>	100										
10	E	10		10		TN	- 8	N.	_	6	10					
				_												
16						1	10							8		
Die	era-Sep†laalSec	r/sm[]		100		K Job Peci	-Jots*(Flow Sho	el						<u>KI</u>		5 8
111 12 ieu 12 is	ere-Sep ⁺ LuciSec 6 0@]3 /1	1/sm[]		1.00	0 0 0	Lo Head	- lots* (Fow Sho	ol 101 / 10	2					4	2	2 8
1 19 kep 10 1 10 1	ence - Secy * Nacal Sect (6) (9) (8) (8) (8) (8) Not : Soci	h/sum([])] Setup	M Set	in an	a la la	Kto Peci	- Jots* (Flow Sko - Jots* (Flow Sko - Jots* (Flow Sko - Jots* - D	ol 10 1 _2 1 10 1	1	D.e	Am	311	iŋ	er d	T	o E N
	erce Seg T (Local Sec (b) (() () () () () () () () () () () () (h/sum([]) 	M Sat	in .	Ran 23		- Jots* (Fow Sho - Jots* (Fow Sho - Jots* (-	0 0 0 0 0 0 1	a z Ra	D.e	Am.	Sat	ip H	er Erd	T 15	5 E 11 35
	ence - Sep T (Local Sent (B-Q-Q-Q) / Not Loc Not .	h/sm(1) 5ep 0 0	Sat	31	hm D D D D		- Joss * (Flow Viso - Joss * (Flow Viso - - - - - - - - - -	p: () =() () =	aj u Ra	D.e	Am 13 19	Sa	Bp H J	Erd 56	I S 9	55 E
	ence - Seys T (Local Sent B) (D) (D) (D) (D) Not 200 D) (D) D) (D) (D) D) (D) (D) D) (D) (D) (D) (D) (D) (D) (D) (D) (D) (h/sm(2) 5eio 0 0 0	Sat	31	Am D D D D D D D D D		- Jots" (Flow Sho - Jots" (Flow Sho - Jots" (Flow Sho - Jots") - Jots" - Jots" (Flow Sho - Jots") - Jots" - Jots" (Flow Sho - Jots") - Jots" - Jots	p 0 1 200 10 1 1 1	2 2 Rs 0 0	0.e	Am 23 39 37	Sa	801 14 13	End 5%	1 5 9 3	5 E
	ence - Sey T (Local Search De (D) (D) (D) (D) Not 20 T Not T Not T Not	h/sum([] 5mp 0 0 0 0 0 0	Sat	32	hm Fm 2 5 6		100 - Jots * (Flow Sho	9 10 × ,×10 10 × 1 1 1 1	1 2 1 8 1 1 1 1 1 1	D.e	Am 33 39 37 31	Sa	801 14 13 13	End 56 19 13 14	T 55 99 33 44	2 E 11 13 13

💥 LEKIN - flexible job-shop scheduling	system - [Log B	ook - Seqs *]	-				
Workspace File Schedule Log Sort Tools Window Help							
°∂8% §∖§⊠⊠	°₽₽₩ �\\$≅₫₽₽ ₽₽₽₽						
ìĕ⊳∎∌Q <u>∎</u> ≠S	_8						
Schedule	Time	C _{max}	T _{max}				
DASH	1	70	70				
General SB Routine / sum(C)	1	71	71				
Local Search / sum(C)	2	71	71				

5. RESULT: comparison between algorithms with lekin software

Algorithms	Make span time(hr)
Shifting bottleneck	70
heuristic	
DASH	70
General SB Routine	71
Local Search	71

6. Conclusion: The present work focused on job shop scheduling problem using Bottleneck heuristic Algorithm to minimize the make span time. There is a wide scope of work in the job shop scheduling problem but there is a no perfect method found till date. So: There are continuous research is going on to minimize the make span for a job shop scheduling problem.

References:

[1] Gonzalo Mejía Delgadillo: Combined approach of the Shifting Bottleneck an Heuristics for minimizing Total Weighted Tardiness in Job Shop scheduling Third International Conference on Production Research (2006)

[2] Jilcha Kassu & Berhan Eshetie : job shop scheduling problem for machine shop with shifting heuristic bottleneck (2015)

[3] Mohd Salleh Abdul Rahim : Bottleneck based heuristic for three machine flow shop scheduling (2011)

[4] V. Modrák, R. S. Pandian: Flow shop scheduling algorithms to minimize completion time for n-jobs m-machine problem 1330-3651 (2010)

[5] Riza A. Rahman, Budi Santosa, and Stefanus E. Wiratno: Hybrid Differential Evolution and Bottleneck Heuristic Algorithm to Solve Bi-Objective Hybrid Flow Shop Scheduling International Conference on Industrial Engineering and Operations Management (2014)

[6]Salleh Ahmad, Sulaiman hasan: Makespan Algorithms and Heuristic for Manufacturing Process Using Bottleneck Approach(2010)

[7]Lars Mönch & Jens Zimmermann: A computational study of a shifting bottleneck

heuristic for multi-product complex job shops, Production Planning & Control: The

Management of Operations, 22:1, 25-40, DOI(2011)

[8] Huang Wenqi, Yin Aihua: An improved shifting bottleneck procedure for the job shop scheduling problem, Operations Research (2004),

[9] Zuo Yan GU Hangu and XI Yugeng: "Modified bottleneck –based heuristic for large scale job-shop based scheduling problem (2007)

[10] Reha Uzsoy & Cheng-Shuo: Wang Performance of decomposition procedures for job shop scheduling problems with bottleneck machines(2000).