
International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015
ISSN: 2395-3470

 www.ijseas.com

A PROBABILISTIC APPROACH TO STRING

TRANSFORMATION
V.Kumaresan1, S.Vairachilai2,

¹PG Student, Department of CSE & N.P.R College of Engg and Tech, Dindigul, Tamil Nadu, India
²Assistant professor, Department of CSE & N.P.R College of Engg and Tech, Dindigul, Tamil Nadu, India

Abstract— String alteration can be active by extracting
the vocabularies and file record identification can be
found. String transformation can be defined as the given
an input string and a set of operators, we are able to match
and change the input string to the k most likely output
strings. Finding all occurrences of a pattern in a text is a
problem that arises frequently in text-editing programs.
Typically, the text is a document being edited, and the
pattern searched for is a particular word supplied by the
user. Efficient algorithms for this problem can greatly aid
the responsiveness of the text-editing program. String-
matching algorithms are also used. We initiate our process
by using naïve string matching algorithm which frames the
rules efficiently. Top candidate values are generated with
the use of MDL method. The naive string-matching
procedure can be interpreted graphically as sliding a
"template" containing the pattern over the text, noting for
which shifts all of the characters on the template equal the
corresponding characters in the text. By using this word
matcher input word has been verified and also we can get
any kind of word by replacing that. In algorithmic work
finding the mistaken area on given word leads to be major
work and correcting on specific instance will be the step by
step work. The efficiency of our system has been improved
while processing with the strings.

Index Terms—Base Station, Ciphertext, Block Chaining
(CBC), Concealed Data Aggregation (CDA), Data Aggregation,
Wireless Sensor Networks (WSNs), and Symmetric key
encryption

I. INTRODUCTION

HE In computing, a spell checker (or spell check) is an
application program that flags words in a document that

may not be spelled correctly. Spell checkers may be stand-
alone, capable of operating on a block of text, or as part of a
larger application, such as a word processor, email client,
electronic dictionary, or search engine. A basic spell checker
carries out the following processes:

It scans the text and extracts the words contained in it. It then
compares each word with a known list of correctly spelled
words (i.e. a dictionary). This might contain just a list of

words, or it might also contain additional information, such as
hyphenation points or lexical and grammatical attributes. An
additional step is a language-dependent algorithm for handling
morphology. Even for a lightly inflected language like
English, the spell-checker will need to consider different
forms of the same word, such as plurals, verbal forms,
contractions, and possessives. For many other languages, such
as those featuring agglutination and more complex declension
and conjugation, this part of the process is more complicated.
It is unclear whether morphological analysis [clarification
needed] provides a significant benefit for English, though its
benefits for highly synthetic languages such as German,
Hungarian or Turkish are clear. As an adjunct to these
components, the program's user interface will allow users to
approve or reject replacements and modify the program's
operation. An alternative type of spell checker uses solely
statistical information, such as n-grams. This approach usually
requires a lot of effort to obtain sufficient statistical
information and may require a lot more runtime storage. This
method is not currently in general use. In some cases spell
checkers use a fixed list of misspellings and suggestions for
those misspellings; this less flexible approach is often used in
paper-based correction methods, such as the see also entries of
encyclopedias.

The first spell checkers were "verifiers" instead of
"correctors." They offered no suggestions for incorrectly
spelled words. This was helpful for typos but it was not so
helpful for logical or phonetic errors. The challenge the
developers faced was the difficulty in offering useful
suggestions for misspelled words. This requires reducing
words to a skeletal form and applying pattern-matching
algorithms.

It might seem logical that where spell-checking
dictionaries are concerned, "the bigger, the better," so that
correct words are not marked as incorrect. In practice,
however, an optimal size for English appears to be around
90,000 entries. If there are more than these, incorrectly spelled
words may be skipped because they are mistaken for others.
For example, a linguist might determine on the basis of corpus
linguistics that the word baht is more frequently a misspelling
of bath or bat than a reference to the Thai currency. Hence, it
would typically be more useful if a few people who write
about Thai currency were slightly inconvenienced, than if the

T

179

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, May 2015
 ISSN: 2395-3470

 www.ijseas.com

spelling errors of the many more people who discuss baths
were overlooked.

The rest of the paper is organized as follows. Section II
presents a description about the previous research which is
relevant to the Word prediction uses language modeling.
Section III involves the detailed description about the
proposed method. Section IV presents the performance
analysis. This paper concludes in Section V.

II. RELATED WORK

Baseline methods are used to provide accuracy in string
reformulation. Okasaki et al.’s method logistic in query
reformulation to provide the efficiency most existing methods
attempt to find all the candidates within a fixed range and
employ n-gram based algorithms or tier based algorithms. To
mine alteration rules from pairs of input in the search logs and
they mainly focused on how to extract useful patterns and rank
the candidates with the patterns, while the models for
candidate generation are simple. A log-linear model is a
mathematical model that takes the form of a function whose
logarithm is a first-degree polynomial function of the
parameters of the model, which makes it possible to apply
(possibly multivariate) linear regression. The specific
applications of log-linear models are where the output quantity
lies in the range 0 to ∞, for values of the independent variables
X, or more immediately, the transformed quantities fi(X) in
the range −∞ to +∞. This may be contrasted to logistic models,
similar to the logistic function, for which the output quantity
lies in the range 0 to 1. Thus the contexts where these models
are useful or realistic often depend on the range of the values
being modeled. Work on string transformation can be
categorized into two groups. Some work mainly considered
well-organized generation of strings, assuming the model.

The goal of log-linear analysis is to determine which
model components are necessary to retain in order to best
account for the data. Model components are the number of
main effects and interactions in the model. For example, if
examined the relationship between three variables—variable
A, variable B, and variable C—there are seven model
components in the saturated model. The three main effects (A,
B, C), the three two-way interactions (AB, AC, BC), and the
one three-way interaction (ABC) gives the seven model
components. The log-linear models can be thought of to be on
a continuum with the two extremes being the simplest model
and the saturated model. The simplest model is the model
where all the expected frequencies are equal. This is true when
the variables are not related. The saturated model is the model
that includes all the model components.

 Query Reformulation (QE) is the process of reformulating a
seed query to improve retrieval performance in information
retrieval operations. In the context of web search engines,
query expansion involves evaluating a user's input (what

words were typed into the search query area, and sometimes
other types of data) and expanding the search query to match
additional documents.
The necessity of Dictionary is to finding meaning for the
specific word or vocabulary. When the word in weak entity
means correcting each word in sentences could not be
possible. Input query do not match well and the file will not be
graded high. Efficiency is an important factor taken into
deliberation in our process. Detachment does not take setting
data into consideration. At the end count for the string pair
only limited leverages. This is only the reason for the input
variances. Introduces many correction and transformation
technique did not generate better candidates. However the
development would not significant at any module which was
associating the number of input process only having small
execution. Typical process execution leads the time
consumption for the full implementation. Till the weak
wordings on any sentence not yet give the full correction
dynamically. Accuracy for pattern matching system need to
give more outcomes.

III. PROBABILITIES STRING TRANSFORMATION APPROACH

The proposed system With the help of String
matching algorithm we are proposing data mining technique to
solve the string transformation. Process starts by getting input
from user side. Input will be any type of sentence or words.
Input will be taken as to mine for the matching process.
Message description length will be considering for the entire
development. Getting instances will correct at the specific
mistaken area by using this MDL process. Matching with the
list of specified vocabularies by using the naïve based string
matching algorithm. To select the suggestion that captures the
most regularity in the data, look for the hypothesis with which
the best compression can be achieved. A program to output the
data is written in that language effectively represents the input
information.

A simple but efficient way to see where one string
occurs inside another is to check each place it could be, one by
one, to see if it's there. So first we see if there's a copy of the
needle in the first character of the vocabularies; if not, we look
to see if there's a copy of the needle starting at the second
character of the vocabularies; if not, we look starting at the
third character, and so forth. In the normal case, we only have
to look at one or two characters for each wrong position to see
that it is a wrong position. Pattern matching will be the further
work in naïve based technique. When selected the wrong
sequence on the sentences iteration will process on to correct
those wording. Verification will be the end progress for the
method usage. On this verification work the complete word
will be formally verified and changed on the text format
easily.

180

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, May 2015
 ISSN: 2395-3470

 www.ijseas.com

A. Including pair of String

In this module, it is assumed that the number of input
string and output string pairs are given as training data. All the
possible rules are derived from the training data based on
string alignment. By using machine learning technique under
the data mining work lead to extract the each word on giving
input sentences. Input string can be getting as text format on
the time demand from the user interaction. Entering file
format can be notepad file or csv file. It can contain n number
of words from the user.

Fig.1.Word Matching Activity from data to the user

 Naïve String Matching is a basic algorithm that
takes a string S, of size n, and a pattern P , of size m , and
scans the first n – m elements of the string from left to right
with the pattern, looking for matches. In short the algorithm
considers all the possible starting positions of the pattern, P,
for j =0 to n - m. Then for every starting position, j, the
pattern, P , must exactly match S for the next consecutive m-1
positions. The result of the algorithm is the set I containing all
of the starting positions in S where P exactly matches the
string S (using indices starting at 1) [1, 5, 6]. As an example
consider P = aba and S = acbababa. The output from the Naïve
String Matching Algorithm would be the set I = {3+1, 5+1} =
{4, 6} (note the plus 1 results from sequence indexes starting

at 1 not 0) since for all other values of j the pattern P did not
match exactly. The upside is that it is easy to implement and
also other uses for the Naïve String Matching Algorithm one
of which runs in O(1) and solves the Intervals Problem.

In the average case, this takes O(n + m) steps, where n is the
length of the haystack and m is the length of the needle; but in
the worst case, searching for a string like "aaaab" in a string
like "aaaaaaaaab", it takes O(nm). The best case occurs when
the first character of the pattern is not present in text at
all.txt[] = "AABCCAADDEE" pat[] = "FAA".

B. Pre- processing

Getting input file can be extract with delimiting
work. Mining work completes on this module. That is each
misspelled values can be gathered and put it for further
correcting process. Pre-processing is gathering each content
from the text file without unwanted characters. If the text
document having emotions or characters means we may
remove and extract for the content transformation process.

C. Query Parsing

After the preparation of likelihood string, the input
has to give to the model. Query with misspelled word or string
is given in this module to get the correct and relevant
documents. The input string is then processed by the MDL
method which gets the relevant string for the given string.
Studies have been conducted on automated learning of a
transformation model from data. Learning method that can
estimate the weights of transformation rules with limited user
input. From the pair of strings the model intakes data and
prepare rules for the string transformation.

D. Relevant Matching

In this Module, we introduce how to efficiently
generate the exact output strings. We employ top MDL
trimming, which can guarantee to find the optimal output
strings. Minimum Description Length (MDL) is an
information theoretic model selection principle. MDL assumes
that the simplest, most compact representation of data is the
best and most probable explanation of the data. It is well
known that the most compact encoding of a sequence is the
encoding that best matches the probability of the symbols.

E. Correcting Misspelled Matching

After correcting the misspelled word using the
dictionary string is corrected. In the setting of using a
dictionary, we can further enhance the efficiency. Candidate
generation is guided by the traversal specific instances.
Finally, we aggregated the identified word pairs across
sessions and users and discarded the pairs with low
frequencies. At the end of process we can show the

181

http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Big_O_notation

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, May 2015
 ISSN: 2395-3470

 www.ijseas.com

improvement of proposing work by comparing with the
previous technique graphically.

IV. PERFORMANCE ANALYSIS

THIS SECTION PRESENTS THE PERFORMANCE EVALUATION OF
THE PROPOSED PROBABILITIES STRING TRANSFORMATION

APPROACHTHE PERFORMANCE IS EVALUATED BASED ON THE
FOLLOWING MEASURES:

A. Aggregation accuracy
The accuracy metric is defined as the ratio between the

collected summations by the data aggregation scheme used
and the real summation of all the individual sensor nodes.

Analysis of input string abccab

Node Remaining
String

Output:End
Position Transition Output

() abccab start at root
(a) bccab a:1 () to child (a) Current

node

(ab) ccab ab:2 (a) to child (ab) Current
node

(bc) cab bc:3, c:3
(ab) to suffix
(b) to child
(bc)

Current
Node, Dict
suffix node

(c) ab c:4
(bc) to suffix
(c) to suffix ()
to child (c)

Current
node

(ca) b a:5 (c) to child (ca) Dict suffix
node

(ab) ab:6 (ca) to suffix
(a) to child (ab)

Current
node

Fig.4.Table of Result String Transformation

In fig.4 it is observed that the accuracy increases as the time
interval increases. The proposed probabilistic string
transformation system results better accuracy than the existing
system. Hence, the chance of collisions occurring is also
reduced.

V. CONCLUSION
Thus our project states the difficulty of spelling

correction for search queries by adopting a generative model
for query correction. To efficiently retrieve the query
corrections with the highest probability, unique model,
machine learning process and string matching algorithm. Two
specific applications are addressed with our method, namely
spelling changing of input string and naïve based verification.
We have proposed a numerical learning approach to find the
error on specific sequences on input query. Finally, we
proposed naïve based matching algorithm for best correctness
which is more accurate and efficient.

Our extensive experiments on real data sets show that
these techniques can greatly improve approximate string
queries. One exciting future line of research is to explore error
models that adapt to an individual or subpopulation. With a
rich set of edits, we hope highly accurate individualized spell
checking can soon become a reality.

Many of these enhancements will increase the
computational burden, and we are interested in strategies to
mitigate this, including approximation methods. For future
work, we plan to explore the use of other sources of spelling
correction pairs to more robustly estimate the transformation
models on web based progress for finding anything
dynamically.

.

REFERENCES

[1] A. Arasu, S. Chaudhuri, and R. Kaushik, “Learning

string transformations from examples,” Proc. VLDB
Endow., vol. 2, pp. 514– 525, August 2009.

[2] S. Tejada, C. A. Knoblock, and S. Minton, “Learning
domain independent string transformation weights for
high accuracy object identification,” in Proceedings
of the eighth ACM SIGKDD international conference
on Knowledge discovery and data mining, ser. KDD
’02. New York, NY, USA: ACM, 2002, pp. 350–359.

[3] M. Hadjieleftheriou and C. Li, “Efficient
approximate search on string collections,” Proc.
VLDB Endow., vol. 2, pp. 1660–1661, August 2009.

[4] C. Li, B. Wang, and X. Yang, “Vgram: improving
performance of approximate queries on string
collections using variable-length grams,” in
Proceedings of the 33rd international conference on
Very large data bases, ser. VLDB ’07. VLDB
Endowment, 2007, pp. 303–314.

[5] X. Yang, B. Wang, and C. Li, “Cost-based variable-
length-gram selection for string collections to support
approximate queries efficiently,” in Proceedings of
the 2008 ACM SIGMOD international conference on
Management of data, ser. SIGMOD ’08. New York,
NY, USA: ACM, 2008, pp. 353–364.

[6] M. Li, Y. Zhang, M. Zhu, and M. Zhou, “Exploring
distributional similarity based models for query
spelling correction,” in Proceedings of the 21st
International Conference on Computational
Linguistics and the 44th annual meeting of the
Association for Computational Linguistics, ser. ACL
’06. Morristown, NJ, USA: Association for
Computational Linguistics, 2006, pp. 1025–1032.

[7] A. R. Golding and D. Roth, “A winnow-based
approach to context-sensitive spelling correction,”
Mach. Learn., vol. 34, pp.107–130, February 1999.

[8] J. Guo, G. Xu, H. Li, and X. Cheng, “ A unified and
discriminative model for query refinement,” in

182

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, May 2015
 ISSN: 2395-3470

 www.ijseas.com

Proceedings of the 31st annual international ACM
SIGIR conference on Research and development in
information retrieval, ser. SIGIR ’08. New York, NY,
USA: ACM,2008, pp. 379–386.

[9] A. Behm, S. Ji, C. Li, and J. Lu, “Space-constrained
gram-based indexing for efficient approximate string
search,” in Proceedings of the 2009 IEEE
International Conference on Data Engineering,
ser.ICDE ’09. Washington, DC, USA: IEEE
Computer Society, 2009,pp. 604–615.

[10] E. Brill and R. C. Moore, “An improved error model
for noisy channel spelling correction,” in Proceedings
of the 38th Annual Meeting on Association for
Computational Linguistics, ser. ACL
’00.Morristown, NJ, USA: Association for
Computational Linguistics,2000, pp. 286–293.

[11] M. Dreyer, J. R. Smith, and J. Eisner, “ Latent-

variable modeling of string transductions with finite-
state methods,” in Proceedings of the Conference on
Empirical Methods in Natural Language Processing,
ser. EMNLP ’08. Stroudsburg, PA, USA: Association
for Computational Linguistics, 2008, pp. 1080–1089.

[12] E. S. Ristad and P. N. Yianilos, “Learning string-edit
distance,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 20, pp. 522–532, May1998.

[13] J. Oncina and M. Sebban, “Learning unbiased
stochastic edit distance in the form of a memory less
finite-state transducer,” in InWorkshop on
Grammatical Inference Applications: Successes and
Future Challenges, 2005.

[14] H. Duan and B.-J. P. Hsu, “Online spelling correction
for query completion,” in Proceedings of the 20th
international conference on World wide web, ser.
WWW ’11. New York, NY, USA: ACM,2011, pp.
117–126.

[15] Q. Chen, M. Li, and M. Zhou, “Improving query
spelling correction using web search results,” in
Proceedings of the 2007 Joint Conference on
Empirical Methods in Natural Language Processing
and Computational Natural Language Learning, ser.
EMNLP ’07, 2007,pp. 181–189.

183

	I. INTRODUCTION
	HE In computing, a spell checker (or spell check) is an application program that flags words in a document that may not be spelled correctly. Spell checkers may be stand-alone, capable of operating on a block of text, or as part of a larger applicatio...
	It scans the text and extracts the words contained in it. It then compares each word with a known list of correctly spelled words (i.e. a dictionary). This might contain just a list of words, or it might also contain additional information, such as hy...
	The first spell checkers were "verifiers" instead of "correctors." They offered no suggestions for incorrectly spelled words. This was helpful for typos but it was not so helpful for logical or phonetic errors. The challenge the developers faced was t...
	It might seem logical that where spell-checking dictionaries are concerned, "the bigger, the better," so that correct words are not marked as incorrect. In practice, however, an optimal size for English appears to be around 90,000 entries. If there ar...
	II. Related Work
	III. Probabilities String Transformation Approach
	A. Including pair of String
	B. Pre- processing
	C. Query Parsing
	D. Relevant Matching
	E. Correcting Misspelled Matching

	IV. Performance Analysis
	this section presents the performance evaluation of the proposed probabilities string transformation approachThe performance is evaluated based on the following measures:
	A. Aggregation accuracy

	V. Conclusion
	References

