
International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015
ISSN: 2395-3470

 www.ijseas.com

163

A Review paper on Software Effort Estimation Methods
Sangeetha K P

 1
P, Prof. Pankaj DalalP

2

P

1
P M Tech Scholar (Software Engineering), Department of Computer Engineering, Shrinathji Institute of Technology &

Engineering, Nathdwara-313301, India

P

2
P Associate Professor, Department of Computer Engineering, Shrinathji Institute of Technology & Engineering, Nathdwara-

313301, India

Abstract

Software effort estimation is an important factor in any
software industry. As software grew in size and
complexity, it is very difficult to accurately predict the cost
of software development. This was the dilemma in past
years. The greatest pitfall of software industry was the fast
changing nature of software development which has made
it difficult to develop parametric models that yield high
accuracy for software development in all domains. This
paper summarizes several classes of software cost
estimation models and techniques.No single technique is
best for all situations, and that a careful comparison of the
results of several approaches is most likely to produce
realistic estimates. The use of workforce is measure as
effort and defined as total time taken by development team
members to perform a given task. It is usually expressed in
units such as man-day, man-month, and man-year. This
value is important as it serves as basis for estimating other
values relevant for software projects, like cost or total time
required to produce a software product. This paper reviews
a research study comparing the different estimation
techniques and illustrates the models using LOC and
function point as an estimate of system size.

1. Introduction

An important aspect of any software development
project is to know how much it will cost. The major
cost factor is labour in most cases. Hence estimating
development effort is centre to the management and
control of a software project. Traditionally, effort
estimation has been used for planning and tracking
project resources. Effort estimation methods founded
on those goals typically focus on providing exact
estimates and usually do not support objectives that
have recently become important within the software
industry, such as systematic and reliable analysis of
causal effort dependencies

It has been surveyed that nearly one-third projects
overrun their budget and late delivered and two-thirds
overrun their original estimates. The accurate
prediction of software development cost is a critical

issue to make the good management decisions. Also
accurately determining how much effort and time a
project required for project managers as well as
system analysts and developers is important.
Reasonably accurate cost estimation capability is
needed by project managers to determine time and
manpower for the project. The system analysts cannot
make realistic hardware-software trade-off analyse
during the system design phase due to unrealistic
proposed budget and schedule. This may lead to
optimistic over promising, hence the inevitable
overruns, performance compromises as a
consequence. But, actually huge overruns resulting
from inaccurate estimates are believed to occur
frequently.

Effort estimation is a critical activity for planning and
monitoring software projects and for delivering the
product on time within budget.

2. Research Study on Effort Estimation

Estimating the size, development time, and cost of
software projects has largely been an intuitive
process in which most estimators attempt to guess the
number of modules, and the number of statements per
module to arrive at a total statement count in the past
era. Then, using some empirically determined cost
per statement relationships, they arrive at a total cost
for the software development project. Thus the
traditional approach is essentially static. While this
approach has been relatively effective for small
projects of say less than 6 months duration and less
than 10 man-years (MY) of effort, it starts to break
down with larger projects and becomes totally
ineffective for large projects

Many different studies have been published during
the last 30 years comparing modelling techniques for
software cost estimation.

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, May 2015
 ISSN: 2395-3470

 www.ijseas.com

164

Prior to 1970, estimation of effort was done manually
by using Thumb rules or some algorithms which were
based on Trial and error [2]. 1970 was an important
period to predict the costs and schedules for software
development. Automated Software cost estimating
tools were built. Some difficulties were experienced
in building large software systems [14]. During early
1970’s the first automated software estimation tool
had been built. This prototyping composite model is
COCOMO (Constructive Cost Model) developed by
Barry Boehm [2].

Function Point Analysis for estimating the size and
development effort had been developed in 1975.
1977, PRICE-S Software estimation model was
designed by Frank Freiman. It was the commercial
tool to be marketed in United States. 1979, SLIM
(Software Life Cycle Model) was introduced to US-
Market by Lawrence H. Putnam based on Norden
Rayleigh Curve [3]. Then The U.S. Department of
Defence (DoD) introduced Ada programming
language in 1983 and it reduced the cost of
developing large systems. That model was named as
Ada-COCOMO [15].1983, Charles Symons, a British
software estimating researcher, introduced Mark II
function point metric [16].1984, IBM had done a
major revision of his function point metric which is
basis of today’s function points [2]. 1985, Caper
Jones extended the concept of Function Point to
include the effect of computationally complex
algorithms [17]. 1986, IFPUG (International Function
Point Users Group) was founded in Toronto, Canada
due to rapidly growing usage of Function Point
Metrics. 1990, Barry Boehm, at university of
Southern California began to revise and extend the
concept of original COCOMO model.

The researchers were comparedtime parametric
models [1] [2] [3] [5] using data sets of various sizes
and environments in these time. The main
conclusions were that these models perform poorly
when applied uncalibrated to other environments [4].
Kemerer et. al, used 15 projects from business
applications and compared four models: SLIM [3],
COCOMO [2], Estimacs [3], and Function Points
(FP) [5]. He reported an estimation error in terms of
the Mean Magnitude of Relative Error (MMRE)
ranging from 85% to 772%.

Conte et al. used six dam sets from widely differing
environments and reported an MMRE variation
between 70% and 90% for their three tested models:
SLIM [3], COCOMO [2], and Jensen’s model. As a
result of their investigation, they proposed a new

model COPMO calibrated separately to the six data
sets. This new model yielded a MMRE of 21%.

1993, the new version of COCOMO was introduced
called COCOMO 2.0 which emerged in 1994
[18].1994, Rajiv D Banker and Hsihui Chang and
Chris F Kemmerer, found it useful for cost estimation
and productivity evaluation purposes’ to think of
software development as an economic production
process [19].1996, Sophie Cockroft, obtained an
accurate size estimations from the early system
specifications [20]. 1997, Existing models were
reviewed and more focus was on accuracy.1998,
Chatzoglou constructed a new model called MARCS
to give predictions of the resources (time, effort, cost,
and people) [21].1999, J. J. Dolado, made a research
about the estimation using the technique of Genetic
Programming (GP) for exploring possible cost
functions [22].

Then researchers also included non-parametric
modeling techniques based on machine learning
algorithms and analogy in the comparative study.
Shepperd et al. [6] compared an analogy-based
technique with stepwise regression. They used nine
different data sets from different domains and report
that, in all cases analogy outperforms stepwise
regression models in terms of the MMRE.

Mukhopadyay et al. [7] used Kemmerer’s project
data set and found that their analogy-based model
Estor, using case-based reasoning (CBR),
outperformed the COCOMO model. Finnie et al. [8]
compared CBR with different regression models
using FP and artificial neural networks on a large
database consisting of 299 projects from 17 different
organizations. They report a better performance of
CBR when compared with different regression
models based on function points. In addition,
artificial neural networks outperformed the CBR
approach.

Srinivasan et al. [8] included regression trees,
artificial neural networks, function points, the
COCOMO model, and the SLIM model in their
comparison. They used the COCOMO data set (63
projects from different applications) as a training set
and tested the results on the Kemerer data (15
projects, mainly business applications). The
regression trees outperformed the COCOMO and the
SLIM model. They also found that artificial neural
networks and function point based prediction models
outperformed regression trees. Using a combination
of the’ COCOMO and the Kemerer data sets, Briand

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, May 2015
 ISSN: 2395-3470

 www.ijseas.com

165

et al. [9] compared the COCOMO model, stepwise
regression, and Optimized Set Reduction (OSR),
which is a non-parametric technique based on
machine learning. OSR outperformed stepwise
regression and the COCOMO model.

 Jorgensen [10] used 100 maintenance projects for
testing several variations of regression, artificial
neural networks, and combinations of OSR with
regression. He found that two multiple regression
models and a hybrid model combining OSR with
regression worked best in terms of accuracy. In
general, he recommended the use of more
sophisticated prediction models like OSR together
with expert estimates to justify the investments in
those models.

Although parametric techniques are included in
almost all of the studies comparing different cost
estimation methods, the comparisons are partial in the
sense that only certain techniques are evaluated.
Moreover, replications of studies are rarely
performed. Even when the same data set is used in
different studies, the results are not always
comparable because of different experimental
designs. Briand et al. and Srinivasan et al., for
example, both used the COCOMO and Kemerer data;
however, they used the data in different ways as
training and test sets [9][8]. Furthermore, many
studies used only small data sets coming from
different environments. This makes it difficult to
draw generalizable conclusions about the models’
performance.

Kitchenham and Kansala [11] also note that better
results can be obtained through disaggregating the
components of function points and using stepwise
regression to re estimate weights and determine the
significant components.

2001, a new approach was proposed based on
reasoning by analogy and in that linguistic quantifiers
were used to estimate the effort [23].2002, Jorgensen,
expert estimation was the most frequently applied
estimation strategy for software projects [24]. 2003,
Yunsik Ahn, Jungseok Suh, Seungryeol Kim and
Hyunsoo Kim, they discussed software maintenance
and proposed SMPEEM (Software Maintenance
Project Effort Estimation) [25].

2007, different methods were introduced for
estimating the effort. The average accuracy of expert
judgment based effort estimates was higher than the
average accuracy of models [26].2008, Parvinder S.

Sandhu, et.al. focused on predicting the accuracy of
models, as Neuro-Fuzzy system was able to
approximate the non-linear function with more
precision. So, neuro-fuzzy system was used as a soft
computing approach to generate the model [27].
During 2009, some theoretical problems were
identified that compared estimation models. It was
invalid to select one or two datasets to prove validity
of a new technique [28].2010, different estimation
techniques were combined to reduce the error and
keep control over the deviation of estimates away
from actual [29, 30].

2011, many estimation techniques were proposed and
used extensively by practitioners for use in Function
Oriented Software development [31].2012, there
were many software size and effort measurement
methods proposed in literature, they were not widely
adopted in practice. A lot of commercial software
costs estimating tools have been released till today
[32].

Although, most research into project effort estimation
has adopted an algorithmic approach, there has been
limited exploration of machine learning or non-
algorithmic methods. For example, Karunanithi et al.
[12] reported the use of neural nets for predicting
software reliability, and conclude that both feed
forward and Jordan networks with a cascade
correlation learning algorithm outperform traditional
statistical models. More recently Wittig and Finnie
[13] describe their use of back propagation learning
algorithms on a multilayer perceptron in order to
predict development effort. An overall error rate
(MMRE) of 29% was obtained which compares
favourably with other methods. However, it must be
stressed that the datasets were large (81 and 136
projects, respectively) and that only a very small
number of projects were withdrawn for validation
purposes.

3. Effort Estimation

Estimating is the process of forecasting or
approximating the time and cost of completing
project deliverables or the task of balancing the
expectations of stakeholders and the need for control
while the project is implemented.

The general form of effort estimation in any model
can be:

E = aSP

b

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, May 2015
 ISSN: 2395-3470

 www.ijseas.com

166

where ‘E’ is effort, S is size typically measured as
lines of code (LOC) or function points, ‘a’ is a
productivity parameter and ‘b' is an economies or
diseconomies of scale parameter.

A fundamental problem of software effort estimation
is the determination of software size. The different
approaches to measure software size are: Line of
Code (LOC), function point (FP), use case point
(UCP).

3.1 LOC-based models

A widely known model based on LOC is the
constructive cost model (COCOMO) (Boehm, 1981).
COCOMO classifies projects into three broad
categories: organic or simple, semidetached or
average, and embedded or complex. The COCOMO
model itself has three versions. The intermediate
version of COCOMO first calculates a nominal effort
estimate in worker-months (WM) using a non-linear
function based on the size of the software measured
in thousands of delivered source instructions (KDSI):

WM = α (KDSI)P

β

where the values of the constants α and β are
different for organic, semidetached, and embedded
projects. Next, it adjusts the nominal estimate by
multiplying WM by the ratings on 15 "cost drivers"
that include attributes of the product, computer,
personnel, and project. The COCOMO basic model,
however, does not use any cost drivers. The
COCOMO detailed model, divides the project into
four phases (product design, detailed design,
coding/unit test, and integration test) and estimates
and applies the 15 cost drivers to each phase
separately rather than to the entire project. Other
models based on non-linear functions of LOC include
the Doty model (Herd, et al., 1977) and the meta-
model by Bailey and Basili (1981).

Another set of LOC-based models uses standard
distributions as the basis for modeling the phase
distribution of effort. Putnam's SLIM model, for
example, determines the life cycle effort (K) in
worker years based on number of source statements
(S) (Putnam, 1978):

K = S P

3
P C P

-3
P tRdRP

-4

where tRdR represents the time of peak manpower
deployment and C is a technology constant. SLIM
uses the Rayleigh curve to model the distribution of

effort over time. The Jensen model also uses the
Rayleigh curve for effort distribution (Jensen, 1983).

A criticism of the LOC-based models is that they
require estimating LOC before developmentbegins.
However, accurate LOC estimates may not be
available until after the detail design is complete. The
focus on LOC as an indicator of size also leads to
problems when a model calibrated for one coding
language is used for another without recalibration.
Finally, variations in line counting methods may
change LOC by a wide margin (Jones, 1986b).

3.2 Function point-based models

The function point method first assigns a weight to
each unique input type, output type, logical file,
external interface file, and external query handled by
an application to reflect the "level of complexity."
The total score for all function types, called the
function count, and is then modified using the total
ratings (TR) of 14 processing complexity
characteristics to account for the different kinds of
system requirements and development environments.
In this model the effort can be estimated as follows:

Step1: Determine the number of components (EI, EO,
EQ, ILF, and ELF)
1. EI - The number of external inputs. These are

elementary processes in which derived data
passes across the boundary from outside to inside.

2. EO - The number of external output. These are
elementary processes in which derived data
passes across the boundary from inside to outside.

3. EQ - The number of external queries. These are
elementary processes with both input and output
components that result in data retrieval from one
or more internal logical files and external
interface files.

4. ILF - The number of internal log files. These are
user identifiable groups of logically related data
that resides entirely within the applications
boundary that are maintained through external
inputs.

5. ELF - The number of external log files. These are
user identifiable groups of logically related data
that are used for reference purposes only, and
which reside entirely outside the system.

Step 2: Compute the Unadjusted Function Point
Count (UFC)
1. Rate each component as low, average, or high.
2. For transactions (EI, EO, and EQ), the rating is

based on the FTR and DET.

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, May 2015
 ISSN: 2395-3470

 www.ijseas.com

167

2.1. FTR - The number of files updated or
referenced.

2.2. DET - The number of user-recognizable
fields.

2.3. Based on the table below, an EI that
references 2 files and 10 data elements would
be ranked as average.

FTR's
DET's

1 – 5 6 – 15 > 15

0 – 1 Low Low Average

2 – 3 Low Average High

> 3 Average High High
3. For files (ILF and ELF), the rating is based on

the RET and DET.
3.1. RET - The number of user-recognizable

data elements in an ILF or ELF.
3.2. DET - The number of user-recognizable

fields.
3.3. Based on the table below, an ILF that

contains 10 data elements and 5 fields would
be ranked as high.

RET's
DET's

1 - 5 6 – 15 > 15

1 Low Low Average

2 – 5 Low Average High

> 5 Average High High

4. Convert ratings into UFC's.

Rating
Values

EO EQ EI ILF ELF

Low 4 3 3 7 5

Average 5 4 4 10 7

High 6 5 6 15 10

Step 3: Compute the Final Function Point Count
(FPC)
1. Compute value adjustment factor (VAF) based on

14 general system characteristics (GSC).
General System
Characteristic

Brief Description

GSC
1

Data
communications

How many communication
facilities are there to aid in the
transfer or exchange of
information with the
application or system?

GSC
2

Distributed data
processing

How are distributed data and
processing functions handled?

GSC
3

Performance Was response time or
throughput required by the
user?

GSC
4

Heavily used
configuration

How heavily used is the
current hardware platform
where the application will be
executed?

GSC
5

Transaction rate How frequently are
transactions executed daily,
weekly, monthly, etc.?

GSC
6

On-Line data
entry

What percentage of the
information is entered On-
Line?

GSC
7

End-user
efficiency

Was the application designed
for end-user efficiency?

GSC
8

On-Line update How many ILF’s are updated
by On-Line transaction?

GSC
9

Complex
processing

Does the application have
extensive logical or
mathematical processing?

GSC
10

Reusability Was the application developed
to meet one or many user’s
needs?

GSC
11

Installation
ease

How difficult is conversion
and installation?

GSC
12

Operational
ease

How effective and/or
automated are start-up, back-
up, and recovery procedures?

GSC
13

Multiple sites Was the application
specifically designed,
developed, and supported to
be installed at multiple sites
for multiple organizations?

GSC
14

Facilitate change Was the application
specifically designed,
developed, and supported to
facilitate change?

2. Weight each GSC on a scale of 0 to 5 based
on whether it has no influence to strong
influence.

3. Compute the FPC as follows.
FPC = UFC * (0.65 + (sum (GSC) * .01))

A simple linear regression can be used to estimate
person-months as a function of function points [5].
The function point approach has also been adapted to
generate new models. For example, the ESTIMACS
model uses a modified function point method for a
size estimate that is subsequently adjusted by
assumptions about project complexity [33]. Another
model derived from the function point approach is the

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, May 2015
 ISSN: 2395-3470

 www.ijseas.com

168

SPOR/100 model [34]. This model includes 175
product and process-related variables, although any
specific estimate typically uses between 50 and 100
variables.

Although the function point approach can provide an
early estimate of size, it also has certain problems.
The two dominant problems associated with this
metric involve the effort required to collect function
point data and the difficulty in obtaining consistent
estimates from multiple individuals (Kemerer, 1989).

4. Conclusion and Future work

A number of different models and effort estimation
methods have been developed in the past four
decades. This clearly indicates the awareness among
the researchers to improve effort estimation in
software engineering. There are many factors have
impact on the software development process. These
factors can be human, technical and their impact can
never be fully predicted. We have studied the
different estimation techniques and illustrated two
approaches for measuring the size in the estimation
process in this paper. If the estimation is done
accurately, it results in error decrease. The Estimation
process reflects the reality of project’s progress. It
avoids cost/budget or schedule overruns. This process
is quite simple which takes a few inputs. This
assessment framework helps inexperienced team to
improve project tracking and estimation. The effort
estimation still remains unreliable. Too many
techniques are developed including use case point,
story point etc. to overcome this inability. In the
future work, we can compare these techniques for
their ability.

References

[1]. Albrecht, A.J. Measuring application development

productivity. In: SHARE/GUIDE: Proceedings of the IBM
Applications Development Symposium, (October 1979) 83-
92.

[2]. Boehm, B. Software Engineering Economics. Englewood
CI@, NJ Prentice-Hall (198 1).

[3]. Putnam, L.H. A general empirical solution to the macro
software sizing and estimation problem. IEEE Transactions
on Sofiware Engineering, ~01.4, no. 4 (‘July 1978) 345-381.

[4]. Kemerer, C.F. An empirical validation of software cost
estimation models. Communications of the ACM vol. 30,
no. 5 (May 1987) 416-429.

[5]. Albrecht & Gafney. Software function, source lines of code,
and development effort prediction: a software science
validation, IEEE Transactions on Software Engineering 9, 6
(1983) 639-648.

[6]. Shepperd, M., Schofield, C. Estimating software project
effort using analogies. IEEE Transactions on Software
Engineering, vol. 23, no. 12 (November 1997) 736-743.

[7]. Mukhopadhyay, T., Vicinanza, S.S., Prietula, M.J.
Examining the feasibility of a case-based reasoning model for
software effort estimation. MIS Quarterly (June 1992) 155-
171.

[8]. Srinivasan, K., Fisher, D. Machine learning approaches to
estimating software development effort. IEEE Transactions
on Software Engineering, VOI. 21, no. 2 (February 1995)
126-137.

[9]. Briand, L.C., Basili, V.R., Thomas, W.M. A pattern
recognition approach for software engineering data analysis.
IEEE Transactions on Software Engineering, vol. 18, no. II
(1992) 931-942

[10]. Jorgensen, M. Experience with the accuracy of Software
Maintenance Task Effort Prediction Models. IEEE
Transactions on Software Engineering, vol. 2 1, no.8
(August, 1995) 674-68 1.

[11]. B.A. Kitchenham and K. Kansala, “Inter-Item Correlations
among Function Points,” Proc. First Int’l Symp. Software
Metrics, Baltimore, Md.: IEEE CS Press, 1993.

[12]. N. Karunanithi, D. Whitley, and Y.K. Malaiya, “Using
Neural Networks in Reliability Prediction,” IEEE Software,
vol. 9, no. 4, pp. 53-59, 1992.

[13]. G.E. Wittig and G.R. Finnie, “Using Artificial Neural
Networks and Function Points to Estimate 4GL Software
Development effort,” Australian J. Information Systems, vol.
1, no. 2, pp. 87-94, 1994.

[14]. F.Brooks, The Mythical Man-Month; Essays on Software
Engineering, 1975. Addison-Wesley, Reading,
Massachusetts.

[15]. Robert C. Tausworthe, 1981. Deep Space Network
Estimation Model, Jet Propulsion Report.

[16]. Charles Symons 1991. Software Sizing and Estimation Mark
II function Points (Function Point Analysis), Wiley 1991.

[17]. Allan J. Albrecht May 1984. AD/M Productivity
Measurement and Estimation Validation, IBM Corporate
Information Systems. IBM Corp.

[18]. Barry W. Boehm, Bradford dark, Ellis Horowitz, Chris
Westland, Ray Madachy and Richard Selby. Cost Models for
Future Software Lifecycle Processes: COCOMO 2.0 Annals
of Software Engineering. Volume 1, pp, 57-94, 1995.

[19]. Banker, R. D., H. Chang, et al. (1994). "Evidence on
economies of scale in software development." Information
and Software Technology 36(5): 275-282.

[20]. Cockcroft, S. (1996). "Estimating CASE development size
from outline specifications." Information and Software
Technology 38(6): 391-399.

[21]. Chatzoglou, P. D. and L. A. Macaulay (1998). "A rule- based
approach to developing software developmentprediction
models." Automated Software Engineering 5(2): 211-243.

[22]. Dolado, J. J. (2000). "A validation of the component- based
method for software size estimation." IEEE Transactions on
Software Engineering 26(10): 1006- 1021

[23]. Ali Idri, Alain Abran, Taghi M. Khosgoftaar. 2001. Fuzzy
Analogy- A New Approach for Software Cost Estimation.
International Workshop on Software Measurement
(IWSM’01).

[24]. Magne Jorgensen, A Review of Studies on Expert Estimation
of Software Development Effort, March 2002.

[25]. Yunsik Ahn, Jungseok Suh, Seungryeol Kim and Hyunsoo
Kim. July 2002. Journal of Software Maintenance and
Evolution: Research and Practice.

[26]. Magne Jorgensen. May 2007 Forecasting of Software
Development Work Effort: Evidence on Expert Judgment
and Formal Model.

[27]. Parvinder S. Sandhu, Porush Bassi, and Amanpreet Singh
Brar. 2008. Software Effort Estimation Using Soft

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, May 2015
 ISSN: 2395-3470

 www.ijseas.com

169

Computing Techniques. World Academy of Science,
Engineering and Technology 46 2008.

[28]. Barbara Kitchenham, Emilia Mendes. 2009. Why
Comparative Effort Prediction Studies may be Invalid ©
ACM 2009 ISBN: 978-1-60558-634-2.

[29]. Vahid Khatibi, Dayang N. A. Jawawi. 2010. Software Cost
Estimation Methods: A Review. Journal of Emerging Trends
in Computing and Information Science.

[30]. M. V. Deshpande, S. G. Bhirud. August 2010. Analysis of
Combining Software Estimation Techniques. International
Journal of Computer Applications (0975 – 8887)

[31]. Samaresh Mishra1, Kabita Hazra2, and Rajib Mall3. October
2011. A Survey of Metrics for Software Development Effort
Estimation. International Journal of Research and Reviews in
Computer Science (IJRRCS)

[32]. Jovan Popović1 and Dragan Bojić1. 2012. A Comparative
Evaluation of Effort Estimation Methods in the Software Life
Cycle. ComSIS Vol. 9, No. 1, January 2012

[33]. Rubin, H.A. "Macroestimation of Software Development
Parameters: The ESTIMACS System," IEEE Conference on
Software Development Tools, Techniques and Alternatives,
Arlington, VA, 1983, pp. 109-118.

[34]. Jones, C. Programming Productivity, McGrawHill, New
York, NY, 1986b.

