
International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, June 2015          
ISSN: 2395-3470 

         www.ijseas.com 

163 

A Review paper on Software Effort Estimation Methods 
Sangeetha K P

 1
P, Prof. Pankaj DalalP

2 

P

1
P M Tech Scholar (Software Engineering), Department of Computer Engineering, Shrinathji Institute of Technology & 

Engineering, Nathdwara-313301, India 

P

2
P Associate Professor, Department of Computer Engineering, Shrinathji Institute of Technology & Engineering, Nathdwara-

313301, India 

Abstract 

Software effort estimation is an important factor in any 
software industry. As software grew in size and 
complexity, it is very difficult to accurately predict the cost 
of software development. This was the dilemma in past 
years. The greatest pitfall of software industry was the fast 
changing nature of software development which has made 
it difficult to develop parametric models that yield high 
accuracy for software development in all domains. This 
paper summarizes several classes of software cost 
estimation models and techniques.No single technique is 
best for all situations, and that a careful comparison of the 
results of several approaches is most likely to produce 
realistic estimates. The use of workforce is measure as 
effort and defined as total time taken by development team 
members to perform a given task. It is usually expressed in 
units such as man-day, man-month, and man-year. This 
value is important as it serves as basis for estimating other 
values relevant for software projects, like cost or total time 
required to produce a software product.  This paper reviews 
a research study comparing the different estimation 
techniques and illustrates the models using LOC and 
function point as an estimate of system size. 

1. Introduction

An important aspect of any software development 
project is to know how much it will cost. The major 
cost factor is labour in most cases. Hence estimating 
development effort is centre to the management and 
control of a software project. Traditionally, effort 
estimation has been used for planning and tracking 
project resources. Effort estimation methods founded 
on those goals typically focus on providing exact 
estimates and usually do not support objectives that 
have recently become important within the software 
industry, such as systematic and reliable analysis of 
causal effort dependencies 

It has been surveyed that nearly one-third projects 
overrun their budget and late delivered and two-thirds 
overrun their original estimates. The accurate 
prediction of software development cost is a critical 

issue to make the good management decisions. Also 
accurately determining how much effort and time a 
project required for project managers as well as 
system analysts and developers is important. 
Reasonably accurate cost estimation capability is 
needed by project managers to determine time and 
manpower for the project. The system analysts cannot 
make realistic hardware-software trade-off analyse 
during the system design phase due to unrealistic 
proposed budget and schedule. This may lead to 
optimistic over promising, hence the inevitable 
overruns, performance compromises as a 
consequence. But, actually huge overruns resulting 
from inaccurate estimates are believed to occur 
frequently. 

Effort estimation is a critical activity for planning and 
monitoring software projects and for delivering the 
product on time within budget. 

2. Research Study on Effort Estimation

Estimating the size, development time, and cost of 
software projects has largely been an intuitive 
process in which most estimators attempt to guess the 
number of modules, and the number of statements per 
module to arrive at a total statement count in the past 
era. Then, using some empirically determined cost 
per statement relationships, they arrive at a total cost 
for the software development project. Thus the 
traditional approach is essentially static. While this 
approach has been relatively effective for small 
projects of say less than 6 months duration and less 
than 10 man-years (MY) of effort, it starts to break 
down with larger projects and becomes totally 
ineffective for large projects 

Many different studies have been published during 
the last 30 years comparing modelling techniques for 
software cost estimation.  
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Prior to 1970, estimation of effort was done manually 
by using Thumb rules or some algorithms which were 
based on Trial and error [2].  1970 was an important 
period to predict the costs and schedules for software 
development. Automated Software cost estimating 
tools were built. Some difficulties were experienced 
in building large software systems [14]. During early 
1970’s the first automated software estimation tool 
had been built. This prototyping composite model is 
COCOMO (Constructive Cost Model) developed by 
Barry Boehm [2].  

Function Point Analysis for estimating the size and 
development effort had been developed in 1975. 
1977, PRICE-S Software estimation model was 
designed by Frank Freiman. It was the commercial 
tool to be marketed in United States. 1979, SLIM 
(Software Life Cycle Model) was introduced to US-
Market by Lawrence H. Putnam based on Norden 
Rayleigh Curve [3]. Then The U.S. Department of 
Defence (DoD) introduced Ada programming 
language in 1983 and it reduced the cost of 
developing large systems. That model was named as 
Ada-COCOMO [15].1983, Charles Symons, a British 
software estimating researcher, introduced Mark II 
function point metric [16].1984, IBM had done a 
major revision of his function point metric which is 
basis of today’s function points [2]. 1985, Caper 
Jones extended the concept of Function Point to 
include the effect of computationally complex 
algorithms [17]. 1986, IFPUG (International Function 
Point Users Group) was founded in Toronto, Canada 
due to rapidly growing usage of Function Point 
Metrics. 1990, Barry Boehm, at university of 
Southern California began to revise and extend the 
concept of original COCOMO model. 

The researchers were comparedtime parametric 
models [1] [2] [3] [5] using data sets of various sizes 
and environments in these time. The main 
conclusions were that these models perform poorly 
when applied uncalibrated to other environments [4]. 
Kemerer et. al, used 15 projects from business 
applications and compared four models: SLIM [3], 
COCOMO [2], Estimacs [3], and Function Points 
(FP) [5]. He reported an estimation error in terms of 
the Mean Magnitude of Relative Error (MMRE) 
ranging from 85% to 772%.  

Conte et al. used six dam sets from widely differing 
environments and reported an MMRE variation 
between 70% and 90% for their three tested models: 
SLIM [3], COCOMO [2], and Jensen’s model. As a 
result of their investigation, they proposed a new 

model COPMO calibrated separately to the six data 
sets. This new model yielded a MMRE of 21%.  

1993, the new version of COCOMO was introduced 
called COCOMO 2.0 which emerged in 1994 
[18].1994, Rajiv D Banker and Hsihui Chang and 
Chris F Kemmerer, found it useful for cost estimation 
and productivity evaluation purposes’ to think of 
software development as an economic production 
process [19].1996, Sophie Cockroft, obtained an 
accurate size estimations from the early system 
specifications [20]. 1997, Existing models were 
reviewed and more focus was on accuracy.1998, 
Chatzoglou constructed a new model called MARCS 
to give predictions of the resources (time, effort, cost, 
and people) [21].1999, J. J. Dolado, made a research 
about the estimation using the technique of Genetic 
Programming (GP) for exploring possible cost 
functions [22].  

Then researchers also included non-parametric 
modeling techniques based on machine learning 
algorithms and analogy in the comparative study. 
Shepperd et al. [6] compared an analogy-based 
technique with stepwise regression. They used nine 
different data sets from different domains and report 
that, in all cases analogy outperforms stepwise 
regression models in terms of the MMRE. 

Mukhopadyay et al. [7] used Kemmerer’s project 
data set and found that their analogy-based model 
Estor, using case-based reasoning (CBR), 
outperformed the COCOMO model. Finnie et al. [8] 
compared CBR with different regression models 
using FP and artificial neural networks on a large 
database consisting of 299 projects from 17 different 
organizations. They report a better performance of 
CBR when compared with different regression 
models based on function points. In addition, 
artificial neural networks outperformed the CBR 
approach.  

Srinivasan et al. [8] included regression trees, 
artificial neural networks, function points, the 
COCOMO model, and the SLIM model in their 
comparison. They used the COCOMO data set (63 
projects from different applications) as a training set 
and tested the results on the Kemerer data (15 
projects, mainly business applications). The 
regression trees outperformed the COCOMO and the 
SLIM model. They also found that artificial neural 
networks and function point based prediction models 
outperformed regression trees. Using a combination 
of the’ COCOMO and the Kemerer data sets, Briand 
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et al. [9] compared the COCOMO model, stepwise 
regression, and Optimized Set Reduction (OSR), 
which is a non-parametric technique based on 
machine learning. OSR outperformed stepwise 
regression and the COCOMO model. 

 Jorgensen [10] used 100 maintenance projects for 
testing several variations of regression, artificial 
neural networks, and combinations of OSR with 
regression. He found that two multiple regression 
models and a hybrid model combining OSR with 
regression worked best in terms of accuracy. In 
general, he recommended the use of more 
sophisticated prediction models like OSR together 
with expert estimates to justify the investments in 
those models.  

Although parametric techniques are included in 
almost all of the studies comparing different cost 
estimation methods, the comparisons are partial in the 
sense that only certain techniques are evaluated. 
Moreover, replications of studies are rarely 
performed. Even when the same data set is used in 
different studies, the results are not always 
comparable because of different experimental 
designs. Briand et al. and Srinivasan et al., for 
example, both used the COCOMO and Kemerer data; 
however, they used the data in different ways as 
training and test sets [9][8]. Furthermore, many 
studies used only small data sets coming from 
different environments. This makes it difficult to 
draw generalizable conclusions about the models’ 
performance.  

Kitchenham and Kansala [11] also note that better 
results can be obtained through disaggregating the 
components of function points and using stepwise 
regression to re estimate weights and determine the 
significant components. 

2001, a new approach was proposed based on 
reasoning by analogy and in that linguistic quantifiers 
were used to estimate the effort [23].2002, Jorgensen, 
expert estimation was the most frequently applied 
estimation strategy for software projects [24]. 2003, 
Yunsik Ahn, Jungseok Suh, Seungryeol Kim and 
Hyunsoo Kim, they discussed software maintenance 
and proposed SMPEEM (Software Maintenance 
Project Effort Estimation) [25].   

2007, different methods were introduced for 
estimating the effort. The average accuracy of expert 
judgment based effort estimates was higher than the 
average accuracy of models [26].2008, Parvinder S. 

Sandhu, et.al. focused on predicting the accuracy of 
models, as Neuro-Fuzzy system was able to 
approximate the non-linear function with more 
precision. So, neuro-fuzzy system was used as a soft 
computing approach to generate the model [27]. 
During 2009, some theoretical problems were 
identified that compared estimation models. It was 
invalid to select one or two datasets to prove validity 
of a new technique [28].2010, different estimation 
techniques were combined to reduce the error and 
keep control over the deviation of estimates away 
from actual [29, 30]. 

2011, many estimation techniques were proposed and 
used extensively by practitioners for use in Function 
Oriented Software development [31].2012, there 
were many software size and effort measurement 
methods proposed in literature, they were not widely 
adopted in practice. A lot of commercial software 
costs estimating tools have been released till today 
[32]. 

Although, most research into project effort estimation 
has adopted an algorithmic approach, there has been 
limited exploration of machine learning or non-
algorithmic methods. For example, Karunanithi et al. 
[12] reported the use of neural nets for predicting 
software reliability, and conclude that both feed 
forward and Jordan networks with a cascade 
correlation learning algorithm outperform traditional 
statistical models. More recently Wittig and Finnie 
[13] describe their use of back propagation learning 
algorithms on a multilayer perceptron in order to 
predict development effort. An overall error rate 
(MMRE) of 29% was obtained which compares 
favourably with other methods. However, it must be 
stressed that the datasets were large (81 and 136 
projects, respectively) and that only a very small 
number of projects were withdrawn for validation 
purposes.  

3. Effort Estimation 

Estimating is the process of forecasting or 
approximating the time and cost of completing 
project deliverables or the task of balancing the 
expectations of stakeholders and the need for control 
while the project is implemented.  

The general form of effort estimation in any model 
can be: 

E = aSP

b 
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where ‘E’ is effort, S is size typically measured as 
lines of code (LOC) or function points, ‘a’ is a 
productivity parameter and ‘b' is an economies or 
diseconomies of scale parameter. 

A fundamental problem of software effort estimation 
is the determination of software size. The different 
approaches to measure software size are: Line of 
Code (LOC), function point (FP), use case point 
(UCP). 

3.1 LOC-based models 

A widely known model based on LOC is the 
constructive cost model (COCOMO) (Boehm, 1981). 
COCOMO classifies projects into three broad 
categories: organic or simple, semidetached or 
average, and embedded or complex. The COCOMO 
model itself has three versions. The intermediate 
version of COCOMO first calculates a nominal effort 
estimate in worker-months (WM) using a non-linear 
function based on the size of the software measured 
in thousands of delivered source instructions (KDSI): 

WM = α (KDSI)P

β 

where the values of the constants α and β are 
different for organic, semidetached, and embedded 
projects. Next, it adjusts the nominal estimate by 
multiplying WM by the ratings on 15 "cost drivers" 
that include attributes of the product, computer, 
personnel, and project. The COCOMO basic model, 
however, does not use any cost drivers. The 
COCOMO detailed model, divides the project into 
four phases (product design, detailed design, 
coding/unit test, and integration test) and estimates 
and applies the 15 cost drivers to each phase 
separately rather than to the entire project. Other 
models based on non-linear functions of LOC include 
the Doty model (Herd, et al., 1977) and the meta-
model by Bailey and Basili (1981). 

Another set of LOC-based models uses standard 
distributions as the basis for modeling the phase 
distribution of effort. Putnam's SLIM model, for 
example, determines the life cycle effort (K) in 
worker years based on number of source statements 
(S) (Putnam, 1978): 

K = S P

3
P C P

-3
P tRdRP

-4 

where tRdR represents the time of peak manpower 
deployment and C is a technology constant. SLIM 
uses the Rayleigh curve to model the distribution of 

effort over time. The Jensen model also uses the 
Rayleigh curve for effort distribution (Jensen, 1983). 

A criticism of the LOC-based models is that they 
require estimating LOC before developmentbegins. 
However, accurate LOC estimates may not be 
available until after the detail design is complete. The 
focus on LOC as an indicator of size also leads to 
problems when a model calibrated for one coding 
language is used for another without recalibration. 
Finally, variations in line counting methods may 
change LOC by a wide margin (Jones, 1986b). 

3.2  Function point-based models 

The function point method first assigns a weight to 
each unique input type, output type, logical file, 
external interface file, and external query handled by 
an application to reflect the "level of complexity." 
The total score for all function types, called the 
function count, and is then modified using the total 
ratings (TR) of 14 processing complexity 
characteristics to account for the different kinds of 
system requirements and development environments. 
In this model the effort can be estimated as follows: 

Step1: Determine the number of components (EI, EO, 
EQ, ILF, and ELF) 
1. EI - The number of external inputs. These are 

elementary processes in which derived data 
passes across the boundary from outside to inside. 

2. EO - The number of external output. These are 
elementary processes in which derived data 
passes across the boundary from inside to outside.  

3. EQ - The number of external queries. These are 
elementary processes with both input and output 
components that result in data retrieval from one 
or more internal logical files and external 
interface files.  

4. ILF - The number of internal log files. These are 
user identifiable groups of logically related data 
that resides entirely within the applications 
boundary that are maintained through external 
inputs. 

5. ELF - The number of external log files. These are 
user identifiable groups of logically related data 
that are used for reference purposes only, and 
which reside entirely outside the system. 
 

Step 2: Compute the Unadjusted Function Point 
Count (UFC) 
1. Rate each component as low, average, or high. 
2. For transactions (EI, EO, and EQ), the rating is 

based on the FTR and DET. 
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2.1. FTR - The number of files updated or 
referenced. 

2.2. DET - The number of user-recognizable 
fields. 

2.3. Based on the table below, an EI that 
references 2 files and 10 data elements would 
be ranked as average.  

FTR's 
DET's 

1 – 5 6 – 15 > 15 

0 – 1 Low Low Average 

2 – 3 Low Average High 

> 3 Average High High 
3. For files (ILF and ELF), the rating is based on 

the RET and DET. 
3.1. RET - The number of user-recognizable 

data elements in an ILF or ELF. 
3.2. DET - The number of user-recognizable 

fields. 
3.3. Based on the table below, an ILF that 

contains 10 data elements and 5 fields would 
be ranked as high.   

RET's 
DET's 

1 - 5 6 – 15 > 15 

1 Low Low Average 

2 – 5 Low Average High 

> 5 Average High High 
 

4. Convert ratings into UFC's. 

Rating 
Values 

EO EQ EI ILF ELF 

Low 4 3 3 7 5 

Average 5 4 4 10 7 

High 6 5 6 15 10 
 
Step 3: Compute the Final Function Point Count 
(FPC) 
1. Compute value adjustment factor (VAF) based on 

14 general system characteristics (GSC). 
General System 
Characteristic 

Brief Description 

GSC 
1 

Data 
communications 

How many communication 
facilities are there to aid in the 
transfer or exchange of 
information with the 
application or system? 

GSC 
2 

Distributed data 
processing 

How are distributed data and 
processing functions handled? 

GSC 
3 

Performance Was response time or 
throughput required by the 
user? 

GSC 
4 

Heavily used 
configuration 

How heavily used is the 
current hardware platform 
where the application will be 
executed? 

GSC 
5 

Transaction rate How frequently are 
transactions executed daily, 
weekly, monthly, etc.? 

GSC 
6 

On-Line data 
entry 

What percentage of the 
information is entered On-
Line? 

GSC 
7 

End-user 
efficiency 

Was the application designed 
for end-user efficiency? 

GSC 
8 

On-Line update How many ILF’s are updated 
by On-Line transaction? 

GSC 
9 

Complex 
processing 

Does the application have 
extensive logical or 
mathematical processing? 

GSC 
10 

Reusability Was the application developed 
to meet one or many user’s 
needs? 

GSC 
11 

Installation  
ease 

How difficult is conversion 
and installation? 

GSC 
12 

Operational  
ease 

How effective and/or 
automated are start-up, back-
up, and recovery procedures? 

GSC 
13 

Multiple sites Was the application 
specifically designed, 
developed, and supported to 
be installed at multiple sites 
for multiple organizations? 

GSC 
14 

Facilitate change Was the application 
specifically designed, 
developed, and supported to 
facilitate change? 

2. Weight each GSC on a scale of 0 to 5 based 
on whether it has no influence to strong 
influence. 

3. Compute the FPC as follows.  
FPC = UFC * (0.65 + (sum (GSC) * .01)) 

 
A simple linear regression can be used to estimate 
person-months as a function of function points [5]. 
The function point approach has also been adapted to 
generate new models. For example, the ESTIMACS 
model uses a modified function point method for a 
size estimate that is subsequently adjusted by 
assumptions about project complexity [33]. Another 
model derived from the function point approach is the 



International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-3, May 2015 
                              ISSN: 2395-3470 

                                                www.ijseas.com 
 
 

168 
 

SPOR/100 model [34]. This model includes 175 
product and process-related variables, although any 
specific estimate typically uses between 50 and 100 
variables. 

Although the function point approach can provide an 
early estimate of size, it also has certain problems. 
The two dominant problems associated with this 
metric involve the effort required to collect function 
point data and the difficulty in obtaining consistent 
estimates from multiple individuals (Kemerer, 1989). 

4. Conclusion and Future work 
 
A number of different models and effort estimation 
methods have been developed in the past four 
decades. This clearly indicates the awareness among 
the researchers to improve effort estimation in 
software engineering. There are many factors have 
impact on the software development process. These 
factors can be human, technical and their impact can 
never be fully predicted. We have studied the 
different estimation techniques and illustrated two 
approaches for measuring the size in the estimation 
process in this paper. If the estimation is done 
accurately, it results in error decrease. The Estimation 
process reflects the reality of project’s progress. It 
avoids cost/budget or schedule overruns. This process 
is quite simple which takes a few inputs. This 
assessment framework helps inexperienced team to 
improve project tracking and estimation. The effort 
estimation still remains unreliable. Too many 
techniques are developed including use case point, 
story point etc.  to overcome this inability. In the 
future work, we can compare these techniques for 
their ability. 
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