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ABSTRACT 
We consider a distribution system in 

which a supplier distributes a product to N 
competing retailers. The demand rate of each 
retailer depends on all of the retailers' prices, or 
alternatively, the price each retailer can charge 
for its product depends on the sales volumes 
targeted by all of the retailers. The supplier 
replenishes his inventory through orders 
(purchases, production runs) from an outside 
source with ample supply. Carrying costs are 
incurred for all inventories, while all supplier 
orders and transfers to the retailers incur fixed 
and variable costs. All retailer prices, sales 
quantities and the complete chain-wide 
replenishment strategy are determined by a 
single decision maker, e.g., the supplier. Using a 
polynomial of order 3 as annual cost of 
managing retailers account, we show that profit 
Π lies within two extremes 1Π  and 2Π , where 

1Π  is the minimum profit and 2Π  is the 
maximum profit. 

Keywords: Stock outs; Inventory/Production; 
marketing/pricing policies; Marketing; Channels 
of distribution; retailing; pricing. 

INTRODUCTION 

Generally a firm goes into the business of 
production in order to make a maximum profit. 
So if a firm as a constant functionC , so that it 
cost )(qC  to produce q  units of its product and 
suppose that the product can be sold at a price 
( )qp per unit, the firms revenue from producing

q  units (Antony and Biggs 2000) is 
( ) ( )( )qpqqR =

and its profit 
( ) ( ) ( )qCqRq −=Π

In their attempt to improve or optimize 
aggregate performance, many supply chains 
increasingly investigate and compare their 
performance under centralized and decentralized 
decision making. In a decentralized system, each 
chain member optimizes his own profit function. 
The challenge therefore consists of structuring 
the costs and rewards of all of the chain 
members so as to align their objectives with 
aggregate supply-chain-wide profits. Such a cost 
and reward structure is referred to as a 
coordination mechanism. In the absence of 
retailer competition, discounts based on the 
annual sales volume arise only in the presence of 
account management costs, as demonstrated in 
Chen et al. (2001). On the other hand, in the 
presence of retailer competition, such discounts 
are required even if no account management 
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costs prevail. The coordination mechanism thus 
provides an economic rationale, within the 
context of a model with complete information 
and symmetric bargaining power for all retailers, 
for wholesale prices to be discounted on the 
basis of annual sales volumes, one of the most 
prevalent forms of price discount schemes (see 
e.g., Brown and Medoff 1990, Stein and El-
Ansary 1992, and Munson and Rosenblatt 1998). 
We analyze the performance of the system, 
assuming either that the supplier has the market 
power to specify the nonlinear wholesale pricing 
scheme, or that a polynomial wholesale price is 
chosen so as to optimize the supply-chain-wide 
profits. The marketing literature on channel 
coordination focuses on pricing decisions. 
McGuire and Staelin (1983) consider the special 
case of two identical retailers, competing in price 
space under linear procurement costs. These 
authors assume that the two retailers are supplied 
by two different manufacturers which are either 
vertically integrated with their retailer or not. 
Raju and Zhang (1999) analyze another variant 
of our model with one dominant retailer capable 
of singlehandedly setting the retail price which is 
adopted by all other retailers in the market.  

Under a linear cost structure, the authors 
show that with a linear wholesale pricing 
scheme, perfect coordination requires that 
double marginalization be avoided. The 
marketing literature has thus restricted itself to 
the simplest of cost structures, i.e., to the case of 
linear costs. As summarized above and 
demonstrated below, more complex, yet basic, 
operational cost structures such as those arising 
under inventory carrying and fixed distribution 
costs introduce additional and essential 
complexities to the challenge of designing 
appropriate coordination mechanisms. This point 
has been brought out in an emerging stream of 
operations management papers. We refer to 
Chen et al. (2001) and, Bernstein and 
Federgruen (2003) for a review of the literature 
on models with exogenously given, deterministic 
demand processes. (This stream of papers 

appears to have originated with Crowther 
(1964), examining quantity discounts from both 
the buyer's and the seller's perspective. Lee and 
Whang (1996), Chen (1999) , Cachon (1999) 
and Zipkin (1999) have developed perfect 
coordination schemes for a stochastic version of 
our model with a single retailer facing an 
exogenously given demand process and in the 
absence of fixed costs for deliveries from the 
supplier to the retailers. Weng (1995) is one of 
the first attempts to treat the retailers' demand 
rates as endogenous variables to be determined 
by a careful balancing of revenue as well as cost 
considerations. This model considers the special 
case of a single retailer or multiple, but identical 
and noncompeting retailers. The author asserts 
that an order quantity discount plus a periodic 
franchise fee suffice to achieve perfect 
coordination. This assertion, however, has not 
been substantiated, as Boyaci and Gallego 
(1997) pointed out. Chen et al. (2001) address 
the centralized and the decentralized versions of 
our supply-chain model, in the absence of the 
retailers competing in price or quantity space, 
i.e., when each retailer's sales volume is a 
function of his own price only. See Munson and 
Rosenblatt (1998), Boyaci and Gallego (1997), 
Cachon (1999), Lariviere (1999), and Tsay et al. 
(1999) for additional reviews of the operations 
management literature related to channel 
coordination with noncompeting retailers. Other 
researchers have also worked on optimal pricing, 
Bernstein and Federgruen (2003) has a good 
review of some of this work.  
 
MODEL AND NOTATION  
We consider a continuous-review inventory 
model with a price-sensitive demand. The 
objective is to determine the inventory 
replenishment and pricing decisions that strike a 
balance between the sales revenue and the cost 
for holding and replenishing inventory over 
time, so as to maximize the expected long-run 
average or discounted profit. Consider a 
distribution system with a supplier distributing a 
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single product or closely substitutable products 
to N retailers. The retailers sell their product to 
the final consumer. The supplier replenishes his 
inventory from a source with ample supply. All 
demands and all retailer orders must be satisfied 
without incurring any stockouts. We assume that 
all orders are received instantaneously upon 
placement. Positive but deterministic lead-times 
can be handled by a simple shift in time of all 
desired replenishment epochs. Thus, let  

ip  = retail price charged by retailer ,i and 

iq  = consumer demand for retailer si' product.  
The two sets of variables may be related 

to each other via the (direct) demand functions  
 ( ) ,,..,1,,..., Nippdq Niii ==   (1) 

or the inverse demand functions  
 ( ) .,..,1,,..., Niqqfq Niii ==     (2) 

We assume that all demand functions are 
downward sloping, a property almost invariably 
satisfied, with the exception of rare luxury, or 
Veblen goods:  

  0<
∂
∂

i

i

p
d , Ni ,...,1=    (3) 

To simplify some of the results, we shall 
consider the case where demand functions are 
linear. In particular, 
  ( ) ∑

≠

+−=
ij

jijiiii ppbapd β   (4) 

with ,0>ia  ,0>ib  Ni ,...,1=    
Because the retailer products are substitutes, we 
have, by a common definition going back to 
Samuelson (1947), that  
  0≥ijβ for all ji ≠      (5)  
We assume in addition that the matrix ,B  with 

iii bB −= and ijijB β= for all ,ji ≠  is 
nonsingular, so that the inverse demand 
functions exist and are linear as well, i.e., 

( ) ,∑
≠

∧∧∧

+−=
ij

jijiiii qpbaqf β  Ni ,...,1=   (6)  

Moreover, we would like the inverse demand 
functions to be downward sloping and products 

to be substitutes in terms of the inverse demand 
functions as well (see Vives 2000): 

,0>
∧

ib  0>
∧

ijβ for all ,ji ≠ Ni ,...,1=   (7)  
Unfortunately, (7) is not necessarily implied by 
the corresponding properties (3) and (5) for the 
direct demand functions. (see Bernstein and 
Federgruen (2003) for additional explanation) 
 Bernstein and Federgruen (2003) 
considered a two – echelon distribution system 
in which a supplier distributed a product to N
competing retailers. The demand rate of each 
retailer depends on the retailers’ price, or 
alternatively, the price each retailer can charge 
for its product depends on the sales volume 
targeted by all the retailers. The solution was 
first characterised by the centralised system in 
which all retailers’ prices, sales quantities and 
the complete chain wide replenishment strategy 
were determined by a single decision maker. The 
system wide profit, Π  (Chen et al. 2001) is 
given by 

( )∑
∞

=

+−=Π
1

0
0

0 ,,
i

iii TTdG
T
k    (8) 

where 
( ) ( )( ) ( )

( ) iiiii
i

i

iiiiiiii

TdhTTdh
T
k

ddccdpTTdG

2
1,max

2
1

,,

00

00

−−−

−−−= ψ
 (9) 

iT   replenishment interval for retailer i , 
Ni ,...1=  

0T  replenishment interval for supplier 

ip   retail price charged by retailer i 
( )ii pd  annual consumer demand in the market 

served by retailer i , a strictly  
 decreasing function of ip  

0k   fixed cost incurred for each delivery to 
the supply i  

ik   fixed cost incurred for each delivery to 
retailer i , Ni ,...1=  

0h   basic annual holding cost per unit in 
inventory of retailer i  
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ih  incremental annual holding cost per unit 
in inventory of retailer i  

0c  fixed cost per unit ordered by retailer 

ic  variable cost per ordered by retailer i  
( )ii dψ  annual cost for managing retailer i ’s 

account. 
  
3. Higher order polynomial model 
Chen et al. (2001) investigated equation (8) 
when 
  iidef +=ψ    
      (10) 
  ( ) iiiii dbadp −=   
      (11) 
Where iii baef ,,,  and id are positive numbers 
Lemma (Chen et al. (2001)): 
 ( )ii dT  is decreasing in id for Ni ...2,1=  
 ( )ii Td  is decreasing in iT  for Ni ...2,1=  
Here ψ  is a polynomial of order one in id and is 
concave downward in  with a maximum profit 
at 
 

( ) 





 −−−−−= iiiiiiii

i
i TdhTTdhecca

b
d

2
1,max

2
1

2
1

000

    
(12) 

In this paper, following (Adeniran 2004) we 
assume 
 32

iiiiii dbdadef +++=ψ   
      (13) 
and retain equation (11) 
 
Theorem 
There exist •

id  and ••
id where ( )•Π id  is 

maximum and ( )••Π id  is minimum 
 
Proof 

 

( ) ( ) ( ){
( )



−−

′−−−+′=
∂
Π∂

iii

iiiiiii
i

ThTTh

dccdpddp
d

2
1,max

2
1

00

0 ψ

 
(14) 

( ) ( ) ( ){ }iiiiii
i

ddpddp
d

ψ ′′−′+″=
∂
Π∂ 22

2

  
(15) 

Setting 0=
∂
Π∂

id
, we obtain 

  iiid βα +=•    (16) 
  iiid βα −=••

   (17) 
where  
  ( )iii ab +−=α    (18) 
and 

 

( )
( ) 
















−−

−−−
++

=

iii

iii

iii

i

ThTTh

ecca
bab

2
1,max

2
1124

00

0
2

β

(19) 

Putting (16) and (17) into 2

2

id∂
Π∂ , we obtain 

 ( ) 02

2

<
∂
Π∂ •

i
i

d
d     

(20) 

 ( ) 02

2

>
∂
Π∂ ••

i
i

d
d     

(21) 

This completes the proof. 
 
PRICING AND REPLENISHMENT 
POLICIES 

Assume replenishment is instantaneous, 
i.e., with zero lead time. We further assume that 
all orders (demand) will be supplied immediately 
upon arrival; i.e., no back-order is allowed, or 
there is an infinite back-order cost penalty.  
 The replenishment follows a continuous-
review, order-up-to policy. Specifically, 
whenever the inventory level drops to zero, it is 
brought up to S instantaneously via a 
replenishment, where S is a decision variable. 

id
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We shall refer to the time between two 
consecutive replenishments as a cycle. 
 We adopt the following dynamic pricing 
strategy. Let 1≥N be a given integer, and let 

0... 1210 =>>>>= − NN SSSSSS . Immediately 
after a replenishment at the beginning of a cycle, 
price p1 is charged until the inventory drops to 

,1S price 2p  is then charged until the inventory 
drops to 2S , ..., and finally when the inventory 
level drops to 1−NS , price Np  is charged until the 
inventory drops to ,0=NS  when another cycle 
begins. The same pricing strategy applies to all 

cycles. For simplicity, we set ( )
N

nNSSn
−

= . 

That is, we divide the full inventory of S  units 
into N  equal segments, and price each segment 
with a different price as the inventory is depleted 
by demand. 
 In summary, the decision variables are: 
( )pS , , where ,+ℜ∈S  and  

( ) N
Nppp Ρ∈= ,...,1 . Within a cycle, we shall 

refer to the time when the price np  is applied as 
period n . 
 
CONCLUDING REMARKS 
 In this paper, we have compared the 
optimal performance of the supply chain 
operating under given types of wholesale pricing 
schemes. It is easiest to characterize the 
performance of the chain under a simple linear 
wholesale pricing scheme, characterized by an 
arbitrary vector of constant wholesale prices. 
There are, however, a number of important 
differences between the equilibrium behaviour 
of the retailers under price and quantity 
competition. If the retailers compete in quantity 
space, each adopts a retail price that is larger 
than its equilibrium price under price 
competition. Larger sales volumes, under price 
competition, can only be guaranteed in special 
cases, e.g., when the retailers are identical. In the 
case of price competition, an equilibrium price 
vector can be found with the help of the simple 

iterative tatonnement scheme (Bernstein and 
Federgruen 2003). Unfortunately, perfect 
coordination cannot be achieved under any linear 
wholesale pricing scheme. To achieve perfect 
coordination, a nonlinear wholesale pricing 
scheme is required. We derive such a scheme 
and analyse it in this present work. Our 
coordination mechanism therefore provides an 
economic rationale, within the context of a 
model with complete information and symmetric 
bargaining power, for wholesale prices to be 
discounted on the basis of annual sales volumes. 
(This type of discount scheme is most prevalent 
in practice). The wholesale price charged to 
retailer i under the coordinating scheme equals 
the average cost (per unit of sales) of all cost 
components incurred by the supplier that are 
directly related to retailer i's sales, plus a 
markup. While linear wholesale pricing schemes 
fail to achieve perfect coordination, they appear 
to allow for modest gaps with respect to the first-
best or centralized solution. (The gaps are 
modest compared to those arising under 
Stackelberg solutions).  
 Our models can be extended to allow 
backlogging, in which case the replenishment 
takes the form of a ( )Ss,−  policy: a 
replenishment order is issued whenever the 
backlog has reached s, to bring the inventory 
level back to .S  (Hence, the replenishment 
quantity is .sS +  Assume zero leadtime as 
before.) The pricing policy is modified 
accordingly: equally divide S and s into N  and 
M  (positive integers) segments, respectively, 
such that 

,
...0

...

1

11210

s
SS

SSSSSS

MNN

NN

−=
>>=

>>>>=

++

−−

 

and apply price np  until the net inventory 
(inventory on hand net the backlogs) falls to nS , 

MNn += ...,1 . 
Also, the optimal pricing will satisfy the 

monotonicity: 
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,...21
∗∗∗ ≤≥≤ Nppp  ∗

+
∗
+

∗
+ ≥≥≥ MNNN ppp ...21  

That is, the optimal prices increase as the on-
hand inventory is depleted, and decrease as the 
backlog increases. 
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