
International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-2, May 2015
 ISSN: 2395-3470

www.ijseas.com

191

1Mr. Prashant Singh, 2Mr. P N Barwal
1 Project Engineer, 2Joint Director

1, 2, Centre for Development of Advanced Computing, Noida, India
1prashantsingh@cdac.in, 2pnbarwal@cdac.in

0F

Abstract— this paper deals with the research in implementing an
Index based Hibernate Search Utility for web applications.
Hibernate is an open source persistence framework that is based
on ORM (Object/Relational Mapping). Often web applications
require the need of a search utility that can search exact words or
phrase within text, order results by relevance and find similar
results based on approximations. Hibernate search coupled with
a few techniques like lazy load, NoSQL and Clustering can help
answering these requirements in a considerably faster and
scalable way. In this paper, by the means of an application we
demonstrate how the Hibernate Search works and then how its
performance can be increased to meet the requirements of a
business application. Finally we compare the results
quantitatively with a traditional Hibernate Search based
application.

Keywords—Hibernate, Full-text Search, Indexing, Web
Application, NoSQL, Clustering.

1.0 INTRODUCTION TO HIBERNATE
eb applications nowadays have to work with huge amount of
data to meet the requirement of growing web based
development. These requirement lead to numerous data

transactions between the application and the database layers. All
the requests to the web application are served through these
transactions. This often results in hampering the performance of
the web application in terms of interacting with the database layer.
To cater these developing needs developers started using and
additional persistence layer in between the application and the
database layer. This layer stores the data that is frequently accessed
in a way that can be reached by the application frequently and
quickly. This persistence layer, since it needs to interact with the
application and the database layer, should be easy to code at the
application level. Java developers use Hibernate for this purpose.

Hibernate is an object-relational mapping library for Java
developers. Object where refers to the application interface where
objects are created in the form of POJOs (Plain Old Java Objects)
or Classes. These objects are mapped with the relations or tables of
the database using Hibernate. It is easy to work with hibernate bec

ause it accesses the database using high level object handling
functions over traditional persistence-related database accesses P

 [1]
P

It’s a freeware. Hibernate not only maps java classes to database
relations, but it also maps java data types to that of the database.
Moreover it can easily connect to most of the databases and the
user can query these databases using HQL (Hibernate Query
Language) which isConverted to the database dialect at runtime by
the Hibernate.
Thus, Hibernate ORM (Object/Relational Mapping) provides us
with features to enhance the performance of an application.
Features like Lazy initialization that initializes the object with a
value only when its value is actually required thus saving time and
memory both. By using various fetching strategies Hibernate can
be customized to work according to the needs of the application. It
is designed so as to deliver a highly scalable architecture as it can
easily work on a cluster of servers.
Apart from the Hibernate ORM, Hibernate offers various other
modules of which the ones we’ll be referring to in this paper
include Hibernate Search, Hibernate Validator and Hibernate
OGM.
In this paper, we study the details of Hibernate and Hibernate
Search and by the means of an application, we define the
functionality of Hibernate Search and how can it be coupled with
other technologies to deliver a high performance web based
application.

This paper is outlined as follows. Section I provides an

introduction to Hibernate and also covers its basic components and
modules of Hibernate that we’ll be dealing with in this paper.
Section II describes the architecture of hibernate based search
application. This section also covers how we implement Hibernate
search traditionally in the Hibernate application. Section III talks
about the new technologies that can be coupled with the Hibernate
Search to enhance its performance. Section IV provides a
quantitative comparison of the performance of Hibernate Search
with that of its enhanced version proposed in this paper. This
section also elucidates the uses of such an enhanced application in
context of various web applications that rely on ‘Searches’.
Finally, in Section V we conclude, describing the novelty of this
study and putting forth its limitations and the scope for future work
on Hibernate and its search based applications.

Analysis and Enhancements of Index Based
Hibernate Search Applications

W

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-2, May 2015
 ISSN: 2395-3470

www.ijseas.com

192

2.0 HIBERNATE ARCHITECTURE

Hibernate architecture is layered to separate its internal
programming interfaces from each other. It uses the database and
the configuration files to provide the persistence layer interacting
between the application and the database layer as depicted in
Figure 1.

The main components of its implementation include connection
management, transaction management, implementing the ORM by
making classes called as ‘Entities’ to represent the database
relations. Then writing the HQL (Hibernate Query Language) to
perform data definition and data manipulation operations on the
database by simply persisting the java objects in the database.

2.1 HIBERNATE SEARCH
Hibernate Search is a full-text search support for objects stored by
Hibernate ORM. It can be used to find words in the text and also
order the search results based on the relevance. It uses index based
search which is a faster medium of accessing data from the
database. It can also find words by approximation which is called
fuzzy searching. For example “nw” would search for “nw”, “new”,
“now” and many more. This type of search depends upon the limit
of approximations mentioned. It also offers the search using
clusters, hence enhancing the performance of the application. It can
cluster the indexes using master slave architecture. It can also be
used to find results around a certain location, as the ‘Entities’ can
be geolocalized easily with hibernate. It can be used to categorize
results based on the price range or bands. Apart from these features
what puts it on top is its ease of use as it manages indexes, clusters,
synchronizes the tasks seamlessly while the developer only
focusses on the application development logic.

Figure 2: Traditional Hibernate Search

Full text search based engines like Apache Lucene also offers free
and extensive index based search facilities, however it is not very
convenient when used in coupling with and ORM. Because while
making an index based search it is very important to keep the
indexes up to date and to avoid mismatching in their mapping with
the objects. Hibernate search, on the contrary, addresses these
issues by indexing the ‘Entities’ with the help of a few annotations,
synchronizes the data automatically and fetches regular objects.
Hibernate search however uses Apache Lucene below it.

2.2 INDEXING

Indexing refers to the complete process of capturing data in the
form of plain text, building documents, analyzing the data and
finally creating indexes. A “Document” here refers to the most
fundamental element which contains the raw data in this process. It
can be called as a collection of fields. The common literals are
filtered initially to increase the content of searchable data. Finally,
these documents stored and attached physically using an Index
Writer inbuilt in the Lucene.

To set up hibernate search we need to add a few configuration files
to pre-setup hibernate application. Then the next step is to add
indexes to the entity objects, this can be done using the following
annotations:

@Entity
@Table (name = "table_name")
@Indexed (index = "name")
@Field (name = "name", analyze= Analyze.YES, store =
Store.YES)

@Entity and @Table are simply hibernate annotations that are
used to refer the java class as a database relation. Whereas
@Indexed is used to create the index of that object and @Field
annotations are added for the index of an attribute of the relation.
This annotation also tells hibernate whether to store the index in
memory or not. Thus, these annotations are specific for the
searching utility.

Application

Hibernate

Properties

Persistent Object

Configuration

DATABASE

Figure 1: Hibernate Architecture

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-2, May 2015
 ISSN: 2395-3470

www.ijseas.com

193

We then create an entity manager to interact with the database
layer as follows:

@Autowired
@PersistenceContext
private EntityManager entityManager;

Then we create a FullTextEntityManager to convert the
EntityManager to use full text search as
FullTextEntityManager fullTextEntityManager =
org.hibernate.search.jpa.Search.getFullTextEntityManager
(entityManager);

Then we create a QueryContextBuilder to create the full text
queries:
QueryContextBuilder queryContextBuilder =
fullTextEntityManager.getSearchFactory ().buildQueryBuilder ();

This QueryContextBuilder is then used to create an Entity Context.
EntityContext entityContext = QueryContextBuilder.forEntity
(entityClass);

Finally, we write query as follows:
org.apache.lucene.search.Query titleQuery1 =
entityContext.get ().qb.keyword ().fuzzy ().onFields ("field1","
field2"," field3"," field4").matching (searchInput).createQuery ();

Here, keyword () is used to search a particular word referred to as
the “searchInput”. Fuzzy () allows search based on approximation
that the words similar to searchInput but not exactly equal to the
search input will be a part of the results fetched by the query.
OnFields () is used to search on the indexes created on field1,
field2, field3 and field4 using the @Field annotation mentioned
above.

This query is then converted to a full text query using the
following snippet:
Javax.persistence.Query fullTextQuery =
fullTextEntityManager.createFullTextQuery (titleQuery1);

fullTextQuery.setFirstResult (n);
This enables the search to bring results starting from n.

fullTextQuery.setMaxResults (max);
This enables the search to bring max results from the database
search.

Figure 3: Tradition Hibernate Search Results

Thus, we have traditionally made a search application that can
search through all the text data of the web application. As we can
see in the Figure 3, the results are shown for the word “testing” and
out of the order of 10,000 results in the database the search brings
about approximately 900 results.

3.0 ENHANCED HIBERNATE SEARCH

Hibernate search alone provides a decent search mechanism that
uses the features of Hibernate for the object relation mapping
coupled with the full text index based search. It itself promotes
loading results in batches. However, by using a few more
technologies on top of it can help increase the usage of hibernate
search on a large scale enterprise application. Technologies. We
now give a brief of the technologies that we have coupled the
traditional hibernate search to enhance and scale its performance:

3.1 LAZY LOADING
This is provided by hibernate itself. Lazy Loading refers to the
method of fetching an entity’s associated options only when they
are actually requested by the framework. To enable lazy loading
explicitly you must use "fetch = FetchType.LAZY" on an
association which you want to lazy load when you are using
hibernate annotations.
For example:
@OneToMany(mappedBy = "person", fetch = FetchType.LAZY)
private Set<PersonEntity> persons;

Hibernate provides a proxy implementation of the associations
lazily mapped together and intercepts the calls using these proxy
implementations. When the requested information goes missing, it
is loaded from the database before the control is given to the parent
control.

International Journal of Scientific Engineering and Applied Science (IJSEAS) - Volume-1, Issue-2, May 2015
 ISSN: 2395-3470

www.ijseas.com

194

3.2 AJAX PAGINATION
AJAX (Asynchronous JavaScript and XML) is a mechanism to
update the data on a page without the need for it to reload the
complete page. This technique we found useful particularly in the
search application because this enables the application to fetch
limited data at a time. For example, the search that the traditional
application made on a database consisting of 10000 values, had
about 900 results. Of those, only 10 results would appear on the
first page. And using ajax based pagination, the subsequent results
will be called in a much faster way, then loading all the 900 results
together. An example of AJAX pagination is shown in Figure 4.

Figure 4: AJAX PAGINATION

3.3 NOSQL
NoSQL provides a mechanism for representing data in a form
different than that of a traditional relational database. It helps in
simplicity and scaling of huge amounts of data. That is precisely
why we preferred NoSQL as a technology to enhance the search
based application. They are often used in big data and real-time
applications. Hibernate OGM (Object/Grid Mapper) provides a
persistent support for the NoSQL.

18T3.4 EHCACHE
18TEHCACHE can also be coupled with hibernate to automatically
cache common queries in memory to provide substantially lower
latency in the searching process. EHCACHE is provides a second
level cache for hibernate. After adding the required configuration
files, EHCACHE can be easily included in the hibernate
application. An example of the snippet to add EHCACHE using
annotations is:
18T@Cache (usage=CacheConcurrencyStrategy.READ_ONLY,
region="department")

4.0 RESULTS
We compared the performances of both these search
implementations on a Core i7 machine with a 1.7 GHz Quad core
processor, and simulated the clustering on an amazon EC2
platform using Hadoop. We searched 100 words, phrases and
sentences from the database. And averaged the total time in
showing the results on the web application. For testing purposes
the application was running on localhost to avoid the network
delays. The results clearly depicts that the performance of the Blue
i.e. the simple search is very low even for a very small set of
records. Whereas the Red line representing the Traditional
Hibernate Search implementation provides a significant
improvement in its performance. But, the Grey line stands out as
the relative time taken by the Enhanced search for a larger dataset
is much less than that of the Traditional hibernate search and the
simple search.

Figure 5: Traditional Vs Enhanced

18T5.0 CONCLUSION

18TThus this paper studies the various aspects of Hibernate its
requirement in scaling the needs of current web applications. We
can see that the huge amount of data present in the modern
databases that needs to be searched upon can be accessed easily by
using Hibernate Search. As it provides a developer friendly
interface to persist data and to get results much faster than the
orthodox. The detailed mechanism involved behind the Hibernate
Search is beyond the scope of this paper. And the future work
would be to identify the rivals of hibernate and Hibernate Search
and to compare the performances of each one of them.

18TREFERENCES

18T[1] Vasavi, B. "HIBERNATE TECHNOLOGY FOR AN
EFFICIENT BUSINESS APPLICATION
EXTENSION." Journal of Global Research in Computer
Science 2.6 (2011): 118-125.
18T[2] en.wikipedia.org/wiki/Ehcache
18T[3] www.hibernate.org
18T[4] en.wikipedia.org/wiki/NoSQL
18T[5] acupof.blogspot.in/2011/02/lucene-and-hibernate-search-

small.html

	1.0 INTRODUCTION TO HIBERNATE
	2.0 HIBERNATE ARCHITECTURE
	2.1 HIBERNATE SEARCH
	2.2 INDEXING
	3.0 ENHANCED HIBERNATE SEARCH
	3.1 LAZY LOADING
	3.2 AJAX PAGINATION
	3.3 NOSQL
	4.0 RESULTS

